Skip to main content
Log in

Numerical Algorithms for the Forward and Backward Fractional Feynman–Kac Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The Feynman–Kac equations are a type of partial differential equations describing the distribution of functionals of diffusive motion. The probability density function (PDF) of Brownian functionals satisfies the Feynman–Kac formula, being a Schrödinger equation in imaginary time. The functionals of non-Brownian motion, or anomalous diffusion, follow the fractional Feynman–Kac equation (Carmi et al. in J Stat Phys 141:1071–1092, 2010), where the fractional substantial derivative is involved. Based on recently developed discretized schemes for fractional substantial derivatives (Chen and Deng arXiv:1310.3086), this paper focuses on providing algorithms for numerically solving the forward and backward fractional Feynman–Kac equations; since the fractional substantial derivative is non-local time-space coupled operator, new challenges are introduced compared with the ordinary fractional derivative. Two ways (finite difference and finite element) of discretizing the space derivative are considered. For the backward fractional Feynman–Kac equation, the numerical stability and convergence of the algorithms with first order accuracy are theoretically discussed; and the optimal estimates are obtained. For all the provided schemes, including the first order and high order ones, of both forward and backward Feynman–Kac equations, extensive numerical experiments are performed to show their effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abate, J.: Numerical inversion of Laplace transforms of probability distributions. ORSA J. Comput. 7, 36–43 (1995)

    Article  MATH  Google Scholar 

  2. Agmon, N.: Residence times in diffusion processes. J. Chem. Phys. 81, 3644 (1984)

    Article  MathSciNet  Google Scholar 

  3. Barkai, E.: Fractional Fokker–Planck equation, solution, and application. Phys. Rev. E 63, 046118 (2001)

    Article  Google Scholar 

  4. Barkai, E., Metzler, R., Klafter, J.: From continuous time random walks to the fractional Fokker–Planck equation. Phys. Rev. E 61, 132 (2000)

    Article  MathSciNet  Google Scholar 

  5. Carmi, S., Barkai, E.: Fractional Feynman–Kac equation for weak ergodicity breaking. Phys. Rev. E 84, 061104 (2011)

    Article  Google Scholar 

  6. Carmi, S., Turgeman, L., Barkai, E.: On distributions of functionals of anomalous diffusion paths. J. Stat. Phys. 141, 1071–1092 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, M.H., Deng, W.H.: Discretized fractional substantial calculus. arXiv:1310.3086 [math.NA]

  8. Chen, M.H., Deng, W.H.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. (in press). arXiv:1304.7425. [math.NA]

  9. Chen, M.H., Deng, W.H.: Fourth order difference approximations for space Riemann–Liouville derivatives based on weighted and shifted Lubich difference operators. Commun. Comput. Phys. (2014). doi:10.4208/cicp.120713.280214a

  10. Chen, M.H., Deng, W.H., Wu, Y.J.: Superlinearly convergent algorithms for the two-dimensional space–time Caputo–Riesz fractional diffusion equation. Appl. Numer. Math. 70, 22–41 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, S., Liu, F., Zhuang, P., Anh, V.: Finite difference approximation for the fractional Fokker–Planck equation. Appl. Math. Model. 33, 256–273 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Deng, W.H.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)

    Article  MathSciNet  Google Scholar 

  13. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Part Differ. Equ. 22, 558–576 (2005)

    Article  MathSciNet  Google Scholar 

  14. Friedrich, R., Jenko, F., Baule, A., Eule, S.: Anomalous dfffusion of inertial, weakly damped particles. Phys. Rev. Lett. 96, 230601 (2006)

    Article  Google Scholar 

  15. Hu, J.W., Tang, H.M.: Numerical Methods for Differential Equations. Scientific Press, China (1999)

    Google Scholar 

  16. Jiang, Y.J., Ma, J.T.: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235, 3285–3290 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kac, M.: On distributions of certain Wiener functionals. Trans. Am. Math. Soc. 65, 1–13 (1949)

    Article  MATH  Google Scholar 

  18. Li, X.J., Xu, C.J.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu, F., Turner, I., Anh, V., Yang, Q., Burrage, K.: A numerical method for the fractional Fitzhugh–Nagumo monodomain model. ANZIAM J. 54, C608–C629 (2013)

    MathSciNet  Google Scholar 

  20. Liu, F., Chen, S., Turner, I., Burrage, K., Anh, V.: Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term. Cent. Eur. J. Phys. 11, 1221–1232 (2013)

    Article  Google Scholar 

  21. Majumdar, S.N.: Brownian functionals in physics and computer science. Curr. Sci. 89, 2076–2092 (2005)

    Google Scholar 

  22. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  23. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Metzler, R., Barkai, E., Klafter, J.: Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker–Planck equation approach. Phys. Rev. Lett. 82, 3653 (1999)

    Article  Google Scholar 

  26. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  27. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)

    MATH  Google Scholar 

  29. Turgeman, L., Carmi, S., Barkai, E.: Fractional Feynman–Kac Equation for Non-Brownian functionals. Phys. Rev. Lett. 103, 190201 (2009)

    Article  MathSciNet  Google Scholar 

  30. Ye, H., Liu, F., Anh, V., Turner, I.: Maximum principle and numerical method for the multi-term time–space Riesz–Caputo fractional differential equations. Appl. Math. Comput. 227, 531–540 (2014)

    Article  MathSciNet  Google Scholar 

  31. Yu, Q., Liu, F., Turner, I., Burrage, K.: Numerical simulation of the fractional Bloch equations. J. Comput. Appl. Math. 255, 635–651 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approximations for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35, 2976–3000 (2013)

    Article  MathSciNet  Google Scholar 

  33. Zhou, H., Tian, W.Y., Deng, W.H.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 11271173, and the Fundamental Research Funds for the Central Universities under Grant No. lzujbky-2014-228. EB thanks the Israel Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Deng.

Appendix

Appendix

To prove that (1.4) is equivalent to (1.5), we first introduce some properties of the fractional substantial calculus.

For \(0<\alpha <1\), using Lemma 2.3, Lemma 2.7 and Lemma 2.6 of [7], there exists

$$\begin{aligned}&{^s\!}D_t^\alpha [{^s\!}I_t^\alpha P(t)] =P(t); \end{aligned}$$
(6.1)
$$\begin{aligned}&{^s\!}I_t^\alpha [{^s\!}D_t^\alpha P(t)] =P(t)-[{^s\!}D_t^{\alpha -1}P(t)]_{t=0}\frac{ t^{\alpha -1} e^{-\rho U(x) t} }{\varGamma (\alpha )};\end{aligned}$$
(6.2)
$$\begin{aligned}&{^s_c}{D}_t^\alpha P(x,t)= {^s\!}D_t^{\alpha -1}[{^s\!}D^1_t P(t)] ={^s\!}D_t^{\alpha }P(t)-\frac{ t^{-\alpha } e^{-\rho U(x) t} }{\varGamma (1-\alpha )}P(0). \end{aligned}$$
(6.3)

Theorem 5.1

Let \(0<\alpha <1\) and \(P(x,t) \in C_{x,t}^{2,1}[a,b]\times [0,T]\). Then

$$\begin{aligned} {^s\!}D^1_tP(x,t)= {^s\!}D_t^{1-\alpha }\left[ \kappa _\alpha \frac{\partial ^2}{\partial x^2} P(x,t) \right] , \end{aligned}$$
(6.4)

is equivalent to

$$\begin{aligned} {^s_c}{D}_t^\alpha P(x,t)={^s\!}D_t^\alpha P(x,t)-\frac{t^{-\alpha }e^{-\rho U(x) t}}{\varGamma (1-\alpha )} P(x,0) = \kappa _\alpha \frac{\partial ^2}{\partial x^2} P(x,t). \end{aligned}$$
(6.5)

Proof

Derive (6.5) from (6.4). Performing both sides of (6.4) by \({^s\!}D_t^{\alpha -1}\) leads to

$$\begin{aligned} {^s\!}D_t^{\alpha -1} [{^s\!}D_tP(x,t)] ={^s\!}D_t^{\alpha -1}\left\{ {^s\!}D_t^{1-\alpha }\left[ \kappa _\alpha \frac{\partial ^2}{\partial x^2} P(x,t) \right] \right\} . \end{aligned}$$

According to above equation and (6.3), (6.2), we get

$$\begin{aligned} {^s\!}D_t^{\alpha }P(x,t)-\frac{ t^{-\alpha } e^{-\rho U(x) t}P(x,0) }{\varGamma (1-\alpha )} =\kappa _\alpha \frac{\partial ^2}{\partial x^2} P(x,t) -{^s\!}D_t^{-\alpha }\left[ \kappa _\alpha \frac{\partial ^2}{\partial x^2} P(x,t)\right] _{t=0}\frac{ t^{-\alpha } e^{-\rho U(x) t} }{\varGamma (1-\alpha )}. \end{aligned}$$

If a function \(P(t)\) is continuously differentiable in the closed interval \([0,t]\), then

$$\begin{aligned}&{^s\!}D_t^{-\alpha }P(t)|_{t=0}\\&\quad =\lim _{ t\rightarrow 0^{+}}\frac{1}{\varGamma (\alpha )}\int \limits _{0}^t{\left( t-\tau \right) ^{\alpha -1}}e^{-\rho U(x)(t-\tau )}{P(\tau )}d\tau \\&\quad =\lim _{ t\rightarrow 0^{+}}\left[ \frac{t^\alpha e^{-\rho U(x) t}}{\varGamma (\alpha +1)} P(0) +\frac{1}{\varGamma (\alpha +1)}\int \limits _{0}^t{\left( t-\tau \right) ^{\alpha }}e^{-\rho U(x)(t-\tau )}{[\rho U(x) P(\tau )+P'(\tau )]}d\tau \right] \\&\quad =0. \end{aligned}$$

Since \(P(x,t) \in C_{x,t}^{2,1}[a,b]\times [0,T]\), we have

$$\begin{aligned} {^s\!}D_t^{-\alpha }\left[ \kappa _\alpha \frac{\partial ^2}{\partial x^2} P(x,t)\right] _{t=0}=0. \end{aligned}$$

It implies that (6.5) holds.

Derive (6.4) from (6.5). Performing both sides of (6.5) by \({^s\!}D_t^{1-\alpha }\) results in

$$\begin{aligned} {^s\!}D_t^{1-\alpha }\left[ {^s\!}D_t^\alpha P(x,t)-\frac{t^{-\alpha }e^{-\rho U(x) t}}{\varGamma (1-\alpha )} P(x,0)\right] ={^s\!}D_t^{1-\alpha }\left[ \kappa _\alpha \frac{\partial ^2}{\partial x^2} P(x,t)\right] . \end{aligned}$$

Using (6.3) and (6.1), there exists

$$\begin{aligned} {^s\!}D_t^{1-\alpha }\left[ {^s\!}D_t^\alpha P(x,t)-\frac{t^{-\alpha }e^{-\rho U(x) t}}{\varGamma (1-\alpha )} P(x,0)\right] ={^s\!}D_t^{1-\alpha }\left[ {^s\!}D_t^{\alpha -1}[{^s\!}D^1_t P(x,t)]\right] = {^s\!}D^1_t P(x,t). \end{aligned}$$

That is (6.4) holds.

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, W., Chen, M. & Barkai, E. Numerical Algorithms for the Forward and Backward Fractional Feynman–Kac Equations. J Sci Comput 62, 718–746 (2015). https://doi.org/10.1007/s10915-014-9873-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9873-6

Keywords

Navigation