Skip to main content
Log in

A Novel Symmetric Skew-Hamiltonian Isotropic Lanczos Algorithm for Spectral Conformal Parameterizations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In the past decades, many methods for computing conformal mesh parameterizations have been developed in response to demand of numerous applications in the field of geometry processing. Spectral conformal parameterization (SCP) (Mullen et al. in Proceedings of the symposium on geometry processing, SGP ’08. Eurographics Association, Aire-la-Ville, Switzerland, pp 1487–1494, 2008) is one of these methods used to compute a quality conformal parameterization based on the spectral techniques. SCP focuses on a generalized eigenvalue problem (GEP) \(L_{C}{\mathbf {f}} = \lambda B{\mathbf {f}}\) whose eigenvector(s) associated with the smallest positive eigenvalue(s) provide the conformal parameterization result. This paper is devoted to studying a novel eigensolver for this GEP. Based on structures of the matrix pair \((L_{C},B)\), we show that this GEP can be transformed into a small-scale compressed and deflated standard eigenvalue problem with a symmetric positive definite skew-Hamiltonian operator. We then propose a symmetric skew-Hamiltonian isotropic Lanczos algorithm (\({\mathbb {S}}\)HILA) to solve the reduced problem. Numerical experiments show that our compressed deflating technique can exclude the impact of convergence from the kernel of \(L_{C}\) and transform the original problem to a more robust system. The novel \({\mathbb {S}}\)HILA method can effectively avoid the disturbance of duplicate eigenvalues. As a result, based on the spectral model of SCP, our numerical eigensolver can compute the conformal parameterization accurately and efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. For mesh with single boundary, we have \(B_\mathtt{b} = I_{2n_\mathtt{b}}\).

  2. A \(2n \times 2n\) matrix \(G\) is said to be symplectic if \(G^{\top }JG = J\).

  3. http://jupiter.math.nctu.edu.tw/~wqhuang/shila/shila_scp.pdf

References

  1. Alexa, M., Wardetzky, M.: Discrete Laplacians on general polygonal meshes. In: ACM SIGGRAPH 2011 Papers, SIGGRAPH ’11, pp. 102:1–102:10. ACM, New York, NY, USA (2011)

  2. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia, PA (1999)

    Book  Google Scholar 

  3. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.: Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA (2000)

    Book  Google Scholar 

  4. Balay, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zhang, H.: PETSc Web page. (2014). http://www.mcs.anl.gov/petsc

  5. Cohen-Steiner, D., Desbrun, M.: Hindsight: LSCM and DCP are one and the same. (2002). http://www.geometry.caltech.edu/pubs/CD02.pdf

  6. Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. Comput. Graph. Forum 21(3), 209–218 (2002)

    Article  Google Scholar 

  7. Fiedler, M.: Algebraic connectivity of graphs. Czechoslov. Math. J. 23(2), 298–305 (1973)

    MathSciNet  Google Scholar 

  8. Floater, M., Hormann, K.: Surface parameterization: a tutorial and survey. In: Dodgson, N., Floater, M., Sabin, M. (eds.) Advances in Multiresolution for Geometric Modelling, Mathematics and Visualization, pp. 157–186. Springer, Berlin (2005)

    Chapter  Google Scholar 

  9. Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Comput. Aided Geom. Des. 14(3), 231–250 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. The Johns Hopkins University Press, Baltimore, MD (2012)

    Google Scholar 

  11. Gortler, S.J., Gotsman, C., Thurston, D.: Discrete one-forms on meshes and applications to 3D mesh parameterization. Comput. Aided Geom. Des. 23(2), 83–112 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gotsman, C., Gu, X., Sheffer, A.: Fundamentals of spherical parameterization for 3D meshes. ACM Trans. Graph. 22(3), 358–363 (2003)

    Article  Google Scholar 

  13. Gu, D., Luo, F., Yau, S.T.: Fundamentals of computational conformal geometry. Math. Comput. Sci. 4(4), 389–429 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gu, X., Yau, S.T.: Global conformal surface parameterization. In: Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing, SGP ’03, pp. 127–137. Eurographics Association, Aire-la-Ville, Switzerland (2003)

  15. Gu, X., Yau, S.T.: Computational Conformal Geometry. International Press, Somerville, MA, Higher Education Press, Beijing (2008)

  16. Gu, X., Zeng, W., Luo, F., Yau, S.T.: Numerical computation of surface conformal mappings. Comput. Methods Funct. Theory 11(2), 747–787 (2012)

    Article  MathSciNet  Google Scholar 

  17. Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hoppe, H., Praun, E.: Shape compression using spherical geometry images. In: Dodgson, N., Floater, M., Sabin, M. (eds.) Advances in Multiresolution for Geometric Modelling, Mathematics and Visualization, pp. 27–46. Springer, Berlin (2005)

    Chapter  Google Scholar 

  19. Hormann, K.: Theory and Applications of Parameterizing Triangulations. Ph.D. thesis. University of Erlangen, Erlangen, Germany (2001)

  20. Hormann, K., Polthier, K., Sheffer, A.: Mesh Parameterization: Theory and practice. SIGGRAPH Asia courses (2008)

  21. Jin, M., Kim, J., Luo, F., Gu, X.: Discrete surface Ricci flow. IEEE Trans. Vis. Comput. Graph. 14(5), 1030–1043 (2008)

    Article  Google Scholar 

  22. Jin, M., Wang, Y., Yau, S.T., Gu, X.: Optimal global conformal surface parameterization. In: IEEE Visualization, pp. 267–274 (2004)

  23. Kharevych, L., Springborn, B., Schröder, P.: Discrete conformal mappings via circle patterns. ACM Trans. Graph. 25(2), 412–438 (2006)

    Article  Google Scholar 

  24. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users’ Guide: Solution of Large Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1998)

  25. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21(3), 362–371 (2002)

    Article  Google Scholar 

  26. Lin, W.W.: Beiträge zur numerischen behandlung des allgemeinen eigenwertproblems \({A}x = \lambda {B}x\). Ph.D. thesis. Universität Bielefeld, Bielefeld, Germany (1985)

  27. Lin, W.W.: On reducing infinite eigenvalues of regular pencils by a nonequivalence transformation. Linear Algebra Appl. 78, 207–231 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Marchandise, E., Remacle, J.F., Geuzaine, C.: Quality surface meshing using discrete parametrizations. In: Quadros, W. (ed.) Proceedings of the 20th International Meshing Roundtable, pp. 21–39. Springer, Berlin (2012)

    Google Scholar 

  29. Mehrmann, V., Watkins, D.: Structure-preserving methods for computing eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils. SIAM J. Sci. Comput. 22(6), 1905–1925 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Moler, C., Stewart, G.: An algorithm for generalized matrix eigenvalue problems. SIAM J. Numer. Anal. 10(2), 241–256 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mullen, P., Tong, Y., Alliez, P., Desbrun, M.: Spectral conformal parameterization. Proceedings of the Symposium on Geometry Processing, SGP ’08, pp. 1487–1494. Eurographics Association, Aire-la-Ville, Switzerland (2008)

  32. Parlett, B.N.: The Symmetric Eigenvalue Problem. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1998)

  33. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ray, N., Li, W.C., Lévy, B., Sheffer, A., Alliez, P.: Periodic global parameterization. ACM Trans. Graph. 25(4), 1460–1485 (2006)

    Article  Google Scholar 

  35. Sander, P.V., Snyder, J., Gortler, S.J., Hoppe, H.: Texture mapping progressive meshes. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01, pp. 409–416. ACM, New York, NY, USA (2001)

  36. Sheffer, A., Lévy, B., Mogilnitsky, M., Bogomyakov, A.: ABF++: fast and robust angle based flattening. ACM Trans. Graph. 24(2), 311–330 (2005)

    Article  Google Scholar 

  37. Sheffer, A., Praun, E., Rose, K.: Mesh parameterization methods and their applications. Found. Trends Comput. Graph. Vis. 2(2), 105–171 (2006)

    Article  Google Scholar 

  38. Sheffer, A., de Sturler, E.: Parameterization of faceted surfaces for meshing using angle-based flattening. Eng. Comput. 17(3), 326–337 (2001)

    Article  MATH  Google Scholar 

  39. Tisseur, F.: Stability of structured Hamiltonian eigensolvers. SIAM J. Matrix Anal. Appl. 23(1), 103–125 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Van Loan, C.F.: A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix. Linear Algebra. Appl. 61, 233–251 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, Y.L., Guo, R., Luo, F., Hu, S.M., Gu, X.: Generalized discrete Ricci flow. Comput. Graph. Forum 28(7), 2005–2014 (2009)

    Article  Google Scholar 

  42. Zayer, R., Lévy, B., Seidel, H.P.: Linear angle based parameterization. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, SGP ’07, pp. 135–141. Eurographics Association, Aire-la-Ville, Switzerland (2007)

  43. Zhang, H., Van Kaick, O., Dyer, R.: Spectral mesh processing. Comput. Graph. Forum 29(6), 1865–1894 (2010)

    Google Scholar 

Download references

Acknowledgments

Some of the mesh models are available on the websites CCGL (Susan and Sophie); Unwrapped meshes (Bunny, Camel, Dino, Fandisk, Hand, Foot and Isis), and Project page of ARAP (Beetle and Gorgyle). The remaining mesh models are courtesy of AIM@SHAPE Shape Repository. The first and third authors would like to acknowledge the support from the National Science Council and the National Centre for Theoretical Sciences in Taiwan. They also like to thank the ST Yau Centre at the National Chiao Tung University for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Qiang Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, WQ., Gu, X.D., Lin, WW. et al. A Novel Symmetric Skew-Hamiltonian Isotropic Lanczos Algorithm for Spectral Conformal Parameterizations. J Sci Comput 61, 558–583 (2014). https://doi.org/10.1007/s10915-014-9840-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9840-2

Keywords

Mathematics Subject Classification (2000)

Navigation