Skip to main content
Log in

On the Galerkin/Finite-Element Method for the Serre Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A highly accurate numerical scheme is presented for the Serre system of partial differential equations, which models the propagation of dispersive shallow water waves in the fully-nonlinear regime. The fully-discrete scheme utilizes the Galerkin / finite-element method based on smooth periodic splines in space, and an explicit fourth-order Runge–Kutta method in time. Computations compared with exact solitary and cnoidal wave solutions show that the scheme achieves the optimal orders of accuracy in space and time. These computations also show that the stability of this scheme does not impose very restrictive conditions on the temporal stepsize. In addition, solitary, cnoidal, and dispersive shock waves are studied in detail using this numerical scheme for the Serre system and compared with the ‘classical’ Boussinesq system for small-amplitude shallow water waves. The results show that the interaction of solitary waves in the Serre system is more inelastic. The efficacy of the numerical scheme for modeling dispersive shocks is shown by comparison with asymptotic results. These results have application to the modeling of shallow water waves of intermediate or large amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Antonopoulos, D., Dougalis, V.: Numerical solution of the ‘classical’ Boussinesq system. Math. Comput. Simul. 82, 984–1007 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Antonopoulos, D., Dougalis, V.: Error estimates for Galerkin approximations of the “classical” Boussinesq system. Math. Comput. 82, 689–717 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Antonopoulos, D., Dougalis, V., Mitsotakis, D.: Galerkin approximations of the periodic solutions of Boussinesq systems. Bull. Greek Math. Soc. 57, 13–30 (2010)

    Google Scholar 

  4. Antonopoulos, D., Dougalis, V., Mitsotakis, D.: Numerical solution of Boussinesq systems of the Bona–Smith family. Appl. Numer. Math. 30, 314–336 (2010)

    Article  MathSciNet  Google Scholar 

  5. Barthélémy, E.: Nonlinear shallow water theories for coastal waves. Surv. Geophys. 25, 315–337 (2004)

    Article  Google Scholar 

  6. Benjamin, T., Lighthill, J.: On cnoidal waves and bores. Proc. R. Soc. Lond. Ser. A 224, 448–460 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bona, J., Chen, M., Saut, J.C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I: derivation and linear theory. J. Nonlinear Sci. 12, 283–318 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bona, J., Dougalis, V., Karakashian, O., McKinney, W.: Conservative, high-order numerical schemes for the generalized Korteweg–de Vries equation. Philos. Trans. R. Soc. Lond. A 351, 107–164 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bonneton, P., Chazel, F., Lannes, D., Marche, F., Tissier, M.: A splitting approach for the fully nonlinear and weakly dispersive Green–Naghdi model. J. Comput. Phys. 230, 1479–1498 (2010)

    Article  MathSciNet  Google Scholar 

  10. Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’ un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pure Appl. 17, 55–108 (1872)

    MATH  Google Scholar 

  11. Carter, J., Cienfuegos, R.: The kinematics stability of solitary and cnoidal wave solutions of the Serre equations. Eur. J. Mech. B: Fluids 30, 259–268 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chazel, F., Lannes, D., Marche, F.: Numerical simulation of strongly nonlinear and dispersive waves using a Green–Naghdi model. J. Sci. Comput. 48, 105–116 (2010)

    Article  MathSciNet  Google Scholar 

  13. Chen, H., Chen, M., Nguyen, N.: Cnoidal wave solutions to Boussinesq systems. Nonlinearity 20, 1443–1461 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chen, M.: Solitary-wave and multi pulsed traveling-wave solution of Boussinesq systems. Appl. Anal. 7, 213–240 (2000)

    Article  Google Scholar 

  15. Choi, W., Camassa, R.: Exact evolution equations for surface waves. J. Eng. Mech. 125(7), 756 (1999). doi:10.1061/(ASCE)0733-9399(1999)125:7(756)

    Article  Google Scholar 

  16. Craig, W., Guyenne, P., Hammack, J., Henderson, D., Sulem, C.: Solitary water wave interactions. Phys. Fluids 18, 57106 (2006)

    Article  MathSciNet  Google Scholar 

  17. Dias, F., Milewski, P.: On the fully-nonlinear shallow-water generalized Serre equations. Phys. Lett. A 374, 1049–1053 (2010)

    Article  MATH  Google Scholar 

  18. Dougalis, V., Mitsotakis, D.: Theory and numerical analysis of Boussinesq systems: a review. In: Kampanis, N.A., Dougalis, V.A., Ekaterinaris, J.A. (eds.) Effective Computational Methods in Wave Propagation, pp. 63–110. CRC Press, Boca Raton (2008)

    Chapter  Google Scholar 

  19. Duran, A., Dutykh, D., Mitsotakis, D.: On the Gallilean invariance of some nonlinear dispersive wave equations. Stud. Appl. Math. 131, 359–388 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dutykh, D., Clamond, D., Milewski, P., Mitsotakis, D.: Finite volume and pseudo-spectral schemes for fully-nonlinear 1D Serre equations. Eur. J. Appl. Math. 24, 761–787 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dutykh, D., Katsaounis, T., Mitsotakis, D.: Finite volume schemes for dispersive wave propagation and runup. J. Comput. Phys. 230(8), 3035–3061 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. El, G., Grimshaw, R., Smyth, N.: Unsteady undular bores in fully nonlinear shallow-water theory. Phys. Fluids 18, 027104 (2006)

    Article  MathSciNet  Google Scholar 

  23. El, G., Grimshaw, R., Smyth, N.: Asymptotic description of solitary wave trains in fully nonlinear shallow-water theory. Phys. D 237(19), 2423–2435 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Esler, J.G., Pearce, J.D.: Dispersive dam-break and lock-exchange flows in a two-layer fluid. J. Fluid Mech. 667, 555–585 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Green, A., Naghdi, P.: A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 78, 237–246 (1976)

    Article  MATH  Google Scholar 

  26. Gurevich, A.V., Pitaevskii, L.P.: Nonstationary structure of a collisionless shock wave. Sov. Phys. JETP 38, 291–297 (1974)

    Google Scholar 

  27. Israwi, S.: Large time existence for 1D Green–Naghdi equations. Nonlinear Anal. Theory Methods Appl. 74, 81–93 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Johnson, R.S.: Camassa–Holm, Korteweg–de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lannes, D.: The Water Waves Problem: Mathematical Analysis and Asymptotics. American Mathematical Society, New York (2013)

    Google Scholar 

  30. Lannes, D., Bonneton, P.: Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation. Phys. Fluids 21, 016601 (2009)

    Article  Google Scholar 

  31. Li, Y.: Hamiltonian structure and linear stability of solitary waves of the Green-Naghdi equations. J. Nonlinear Math. Phys. 9, 99–105 (2002)

    Article  Google Scholar 

  32. Lord Rayleigh, J.: On waves. Philos. Mag. 1, 257–279 (1876)

    Article  Google Scholar 

  33. Métayer, O.L., Gavrilyuk, S., Hank, S.: A numerical scheme for the Green–Naghdi model. J. Comput. Phys. 229(6), 2034–2045 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Peregrine, D.: Long waves on beaches. J. Fluid Mech. 27, 815–827 (1967)

    Article  MATH  Google Scholar 

  35. Schultz, M.: Spline Analysis. Prentice Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  36. Seabra-Santos, F., Renouard, D., Temperville, A.: Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle. J. Fluid Mech. 176, 117–134 (1987)

    Article  Google Scholar 

  37. Serre, F.: Contribution á l’ étude des écoulements permanents et variables dans les canaux. La Houille Blanche 8, 374–388 (1953)

    Article  Google Scholar 

  38. Serre, F.: Contribution á l’ étude des écoulements permanents et variables dans les canaux. La Houille Blanche 8, 830–872 (1953)

    Article  Google Scholar 

  39. Su, C., Gardner, C.: KdV equation and generalizations. Part III. Derivation of Korteweg–de Vries equation and Burgers equation. J. Math. Phys. 10, 536–539 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wei, G., Kirby, J.T., Grilli, S.T., Subramanya, R.: A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. J. Fluid Mech. 294, 71–92 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  41. Whitham, G.B.: Non-linear dispersion of water waves. J. Fluid Mech. 27, 399–412 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  42. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  43. Zhang, Y., Kennedy, A.B., Panda, N., Dawson, C., Westerink, J.J.: Boussinesq–Green–Naghdi rotational water wave theory. Coastal Eng. 73, 13–27 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

D. Dutykh would like to acknowledge the hospitality of UC Merced during his visit in April 2013 and the support from ERC under the research project ERC-2011-AdG 290562-MULTIWAVE. D. Mitsotakis would like to thank Prof. Mark Hoefer for his suggestions and his comments and for the fruitful discussions on dispersive waves.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Mitsotakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitsotakis, D., Ilan, B. & Dutykh, D. On the Galerkin/Finite-Element Method for the Serre Equations. J Sci Comput 61, 166–195 (2014). https://doi.org/10.1007/s10915-014-9823-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9823-3

Keywords

Mathematics Subject Classification

Navigation