Skip to main content
Log in

Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We study in this paper two linearized backward Euler schemes with Galerkin finite element approximations for the time-dependent nonlinear Joule heating equations. By introducing a time-discrete (elliptic) system as proposed in Li and Sun (Int J Numer Anal Model 10:622–633, 2013; SIAM J Numer Anal (to appear)), we split the error function as the temporal error function plus the spatial error function, and then we present unconditionally optimal error estimates of \(r\)th order Galerkin FEMs (\(1 \le r \le 3\)). Numerical results in two and three dimensional spaces are provided to confirm our theoretical analysis and show the unconditional stability (convergence) of the schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Achdou, Y., Guermond, J.L.: Convergence analysis of a finite element projection/Lagrange–Galerkin method for the incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 37, 799–826 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Akrivis, G., Larsson, S.: Linearly implicit finite element methods for the time dependent Joule heating problem. BIT 45, 429–442 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Allegretto, W., Xie, H.: Existence of solutions for the time dependent thermistor equation. IMA. J. Appl. Math. 48, 271–281 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Allegretto, W., Yan, N.: A posteriori error analysis for FEM of thermistor problems. Int. J. Numer. Anal. Model. 3, 413–436 (2006)

    MATH  MathSciNet  Google Scholar 

  5. Allegretto, W., Lin, Y., Ma, S.: Existence and long time behavior of solutions to obstacle thermistor equations. Discrete Contin. Dyn. Syst. Ser. A 8, 757–780 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New York (2002)

    Book  MATH  Google Scholar 

  7. Cimatti, G.: Existence of weak solutions for the nonstationary problem of the joule heating of a conductor. Ann. Mat. Pura Appl. 162, 33–42 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, Y.Z., Wu, L.C.: Second order elliptic equations and elliptic systems, Translations of Mathematical Monographs 174, AMS, USA (1998)

  9. Chen, Z., Hoffmann, K.-H.: Numerical studies of a non-stationary Ginzburg–Landau model for superconductivity. Adv. Math. Sci. Appl. 5, 363–389 (1995)

    MATH  MathSciNet  Google Scholar 

  10. Deng, Z., Ma, H.: Optimal error estimates of the Fourier spectral method for a class of nonlocal, nonlinear dispersive wave equations. Appl. Numer. Math. 59, 988–1010 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Douglas Jr, J., Ewing, R., Wheeler, M.F.: A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO Anal. Numer. 17, 249–265 (1983)

    MATH  MathSciNet  Google Scholar 

  12. Elliott, C.M., Larsson, S.: A finite element model for the time-dependent joule heating problem. Math. Comput. 64, 1433–1453 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ewing, R.E., Wheeler, M.F.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17, 351–365 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  14. He, Y.: The Euler implicit/explicit scheme for the 2D time-dependent Navier–Stokes equations with smooth or non-smooth initial data. Math. Comput. 77, 2097–2124 (2008)

    Article  MATH  Google Scholar 

  15. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Holst, M.J., Larson, M.G., Malqvist, A., Axel, R.: Convergence analysis of finite element approximations of the Joule heating problem in three spatial dimensions. BIT 50, 781–795 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hou, Y., Li, B., Sun, W.: Error analysis of splitting Galerkin methods for heat and sweat transport in textile materials. SIAM J. Numer. Anal. 51, 88–111 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kellogg, B., Liu, B.: The analysis of a finite element method for the Navier–Stokes equations with compressibility. Numer. Math. 87, 153–170 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)

    MATH  MathSciNet  Google Scholar 

  20. Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)

    Google Scholar 

  21. Li, B.: Mathematical modeling, analysis and computation for some complex and nonlinear flow problems. PhD Thesis, City University of Hong Kong, Hong Kong (2012)

  22. Logg, A., Mardal, K.-A., Wells, G.N., et al.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012). doi:10.1007/978-3-642-23099-8

    Book  MATH  Google Scholar 

  23. Ma, H., Sun, W.: Optimal error estimates of the Legendre–Petrov–Galerkin method for the Korteweg–de Vries equation. SIAM J. Numer. Anal. 39, 1380–1394 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mu, M., Huang, Y.: An alternating Crank–Nicolson method for decoupling the Ginzburg–Landau equations. SIAM J. Numer. Anal. 35, 1740–1761 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nirenberg, L.: An extended interpolation inequality. Ann. Scuola Norm. Sup. Pisa (3) 20, 733–737 (1966)

    MATH  MathSciNet  Google Scholar 

  26. Sun, W., Sun, Z.: Finite difference methods for a nonlinear and strongly coupled heat and moisture transport system in textile materials. Numer. Math. 120, 153–187 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)

    MATH  Google Scholar 

  28. Tourigny, Y.: Optimal \(H^1\) estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation. IMA J. Numer. Anal. 11, 509–523 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang, K., Wang, H.: An optimal-order error estimate to ELLAM schemes for transient advection–diffusion equations on unstructured meshes. SIAM J. Numer. Anal. 48, 681–707 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wu, H., Ma, H., Li, H.: Optimal error estimates of the Chebyshev–Legendre spectral method for solving the generalized Burgers equation. SIAM J. Numer. Anal. 41, 659–672 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yue, X.: Numerical analysis of nonstationary thermistor problem. J. Comput. Math. 12, 213–223 (1994)

    MATH  MathSciNet  Google Scholar 

  32. Yuan, G.: Regularity of solutions of the thermistor problem. Appl. Anal. 53, 149–155 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  33. Yuan, G., Liu, Z.: Existence and uniqueness of the \(C^\alpha \) solution for the thermistor problem with mixed boundary value. SIAM J. Math. Anal. 25, 1157–1166 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  34. Zhao, W.: Convergence analysis of finite element method for the nonstationary thermistor problem. Shandong Daxue Xuebao 29, 361–367 (1994)

    MATH  Google Scholar 

  35. Zhou, S., Westbrook, D.R.: Numerical solutions of the thermistor equations. J. Comput. Appl. Math. 79, 101–118 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  36. Zlámal, M.: Curved elements in the finite element method. I. SIAM J. Numer. Anal. 10, 229–240 (1973)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would like to thank Professor Weiwei Sun for valuable suggestions and many constructive discussions. The work of the author was supported in part by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 102712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huadong Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, H. Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations. J Sci Comput 58, 627–647 (2014). https://doi.org/10.1007/s10915-013-9746-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9746-4

Keywords

Mathematics Subject Classification

Navigation