Skip to main content
Log in

On Adaptive Eulerian–Lagrangian Method for Linear Convection–Diffusion Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider the adaptive Eulerian–Lagrangian method (ELM) for linear convection–diffusion problems. Unlike classical a posteriori error estimations, we estimate the temporal error along the characteristics and derive a new a posteriori error bound for ELM semi-discretization. With the help of this proposed error bound, we are able to show the optimal convergence rate of ELM for solutions with minimal regularity. Furthermore, by combining this error bound with a standard residual-type estimator for the spatial error, we obtain a posteriori error estimators for a fully discrete scheme. We present numerical tests to demonstrate the efficiency and robustness of our adaptive algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbott, M.B.: An Introduction to Method of Characteristics. American Elsevier, New York (1966)

    Google Scholar 

  2. Achdou, Y., Guermond, J.L.: Convergence analysis of a finite element projection/Lagrange–Galerkin method for the incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 37(3), 799–826 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Adjerid, S., Belguendouz, B., Flaherty, J.E.: A posteriori finite element error estimation for diffusion problems. SIAM J. Sci. Comput. 21(2), 728–746 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics (New York). Wiley-Interscience [Wiley], New York (2000)

    Book  Google Scholar 

  5. Bernardi, C., Verfürth, R.: A posteriori error analysis of the fully discretized time-dependent Stokes equations. M2AN. Math. Model. Numer. Anal. 38(3), 437–455 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Binev, P., Dahmen, W., Devore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97, 219–268 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brooks, N., Hughes, T.J.: Streamline Upwind/Petrov–Galerkink formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cascon, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cawood, M.E., Ervin, V.J., Layton, W.J., Maubach, J.M.: Adaptive defect correction methods for convection dominated, convection diffusion problems. J. Comput. Appl. Math. 116(1), 1–21 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, Z., Feng, J.: An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems. Math. Comput. 73(247), 1167–1193 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, Z., Ji, G.: Adaptive computation for convection dominated diffusion problems. Sci. China Ser. A 47(suppl), 22–31 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, Z., Ji, G.: Sharp \(L^1\) a posteriori error analysis for nonlinear convection–diffusion problems. Math. Comput. 75(253), 43–71 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, Z., Nochetto, R.H., Schmidt, A.: A characteristic galerkin method with adaptive error control for the continuous casting problem. Comput. Methods Appl. Mech. Eng. 189(1), 249–276 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Davis, GdV, Mallinson, G.D.: An evaluation of upwind and central difference approximations by a study of recirculating flow. Comput. Fluids 4, 29–43 (1976)

    Article  MATH  Google Scholar 

  16. Demkowicz, L., Oden, J.T.: An adaptive characteristic Petrov–Galerkin finite element method for convection-dominated linear and nonlinear parabolic problems in two space variables. Comput. Methods Appl. Mech. Eng. 55(1–2), 63–87 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Douglas Jr, J., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19(5), 871–885 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  19. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal. 28(1), 43–77 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems II: optimal error estimates in \(l_\infty l_2 \) and \(l_\infty l_\infty \). SIAM J. Numer. Anal. 32(3), 706–740 (1995a)

  21. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems IV: nonlinear problems. SIAM J. Numer. Anal. 32(6), 1729–1749 (1995b)

    Article  MATH  MathSciNet  Google Scholar 

  22. Etienne, J., Hinch, E., Li, J.: A Lagrangian–Eulerian approach for the numerical simulation of freesurface flow of a viscoelastic material. J. Non-Newton. Fluid Mech. 136, 157–166 (2006)

    Article  MATH  Google Scholar 

  23. Ewing, R.E.: The Mathematics of Reservoir Simulation. SIAM, Philadelphia (1983)

    Book  MATH  Google Scholar 

  24. Feng, K., Shang, Zj: Volume-preserving algorithms for source-free dynamical systems. Numer. Math. 463, 451–463 (1995)

    MathSciNet  Google Scholar 

  25. Hebeker, F.K., Rannacher, R.: An adaptive finite element method for unsteady convection-dominated flows with stiff source terms. SIAM J. Sci. Comput. 21(3), 799–818 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Houston, P., Süli, E.: Adaptive Lagrange–Galerkin methods for unsteady convection–diffusion problems. Math. Comput. 70(233), 77–106 (2001)

    Article  MATH  Google Scholar 

  27. Jakob, M.: Heat Transfer. Wiley, New York (1959)

    Google Scholar 

  28. Jia, J., Hu, X., Xu, J., Zhang, C.S.: Effects of integrations and adaptivity for the Eulerian–Lagrangian method. J. Comput. Math. 29, 367–395 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Johnson, C., Nie, Y.Y., Thomée, V.: An a posteriori error estimate and adaptive timestep control for a backward euler discretization of a parabolic problem. SIAM J. Numer. Anal. 27(2), 277–291 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  30. Karakatsani, F., Makridakis, C.: A posteriori estimates for approximations of time-dependent Stokes equations. IMA J. Numer. Anal. 27(4), 741–764 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kharrat, N., Mghazli, Z.: Residual error estimators for the time-dependent Stokes equations. Comptes Rendus Mathe. 340(5), 405–408 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Krüger, O., Picasso, M., Scheid, J.F.: A posteriori error estimates and adaptive finite elements for a nonlinear parabolic problem related to solidification. Comput. Methods Appl. Mech. Eng. 192(5–6), 535–558 (2003)

    Article  MATH  Google Scholar 

  33. Lakkis, O., Makridakis, C.: Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math. Comput. 75(256), 1627–1658 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lee, Y., Xu, J.: New formulations, positivity preserving discretizations and stability analysis for non-newtonian flow models. Comput. Methods Appl. Mech. Eng. 195, 1180–1206 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Moore, P.K.: A posteriori error estimation with finite element semi- and fully discrete methods for nonlinear parabolic equations in one space dimension. SIAM J. Numer. Anal. 31(1), 149–169 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  36. Morin, P., Nochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Rev. 44(4), 631–658 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Nochetto, R.H., Savaré, G., Verdi, C.: A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Commun. Pure Appl. Math. 53(5), 525–589 (2000)

    Article  MATH  Google Scholar 

  38. Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: An introduction. In: Multiscale, Nonlinear and Adaptive Approximation. Springer, Berlin, Heidelberg pp. 409–542 (2009)

  39. Phillips, T.N., Williams, A.J.: Viscoelastic flow through a planar contraction using a semi-Lagrangian finite volume method. J. Non-Newton. Fluid Mech. 87(2–3), 215–246 (1999)

    Article  MATH  Google Scholar 

  40. Phillips, T.N., Williams, A.J.: A semi-Lagrangian finite volume method for Newtonian contraction flows. SIAM J. Sci. Comput. 22(6), 2152–2177 (2000)

    Article  MathSciNet  Google Scholar 

  41. Picasso, M.: Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Eng. 167(3–4), 223–237 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  42. Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier–Stokes equations. Numer. Math. 38(3), 309–332 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  43. Roos, H., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection–Diffusion–Reaction and Flow Problems. Springer, Berlin Heidelberg (2008)

    Google Scholar 

  44. Schmidt, A., Siebert, K.G.: Design of adaptive finite element software: the finite element toolbox ALBERTA. In: Lecture Notes in Computational Science and Engineering, vol. 42. Springer, Berlin (2005)

  45. Sorbents, I., Totsche, K.U., Knabner, P., Kgel-knabner, I.: The modeling of reactive solute transport with sorption to mobile and immobile sorbents, 1. Experimental evidence and model development. Water Resour. Res. 32, 1611–1622 (1996)

    Article  Google Scholar 

  46. Stevenson, R.: An optimal adaptive finite element method. SIAM J. Numer. Anal. 42(5), 2188–2217 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  47. Verfürth, R.: A review of a posteriori error estimation and adaptive mesh refinement techniques. Wiley and Teubner, New York (1996)

    MATH  Google Scholar 

  48. Verfürth, R.: A posteriori error estimates for nonlinear problems: \(L^r(0,T;W^{1,\rho }(\Omega ))\)-error estimates for finite element discretizations of parabolic equations. Numer. Methods Partial Diff. Equ. 14(4), 487–518 (1998)

    Article  MATH  Google Scholar 

  49. Verfurth, R.: Robust a posteriori error estimates for nonstationary convection-diffusion equations. SIAM J. Numer. Anal. 43, 1783–1802 (2005)

    Article  MathSciNet  Google Scholar 

  50. Wang, H.: An optimal-order error estimate for an ELLAM scheme for two-dimensional linear advection–diffusion equations. SIAM J. Numer. Anal. 37(4), 1338–1368 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  51. Wang, H., Wang, K.: Uniform estimates for Eulerian–Lagrangian methods for singularly perturbed time-dependent problems. SIAM J. Numer. Anal. 45(3), 1305–1329 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  52. Xiu, D., Karniadakis, G.E.: A semi-Lagrangian high-order method for Navier–Stokes equations. J. Comput. Phys. 172(2), 658–684 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  53. Yeh, G.T.: An adaptive local grid refinement based on the exact peak capture and oscillation free scheme to solve transport equations. Comput. Fluid 24, 293 (1995)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Ricardo H. Nochetto, Professor Long Chen, and two anonymous referees for their comments on earlier versions of this paper. Hu and Xu are supported in part by NSF Grant DMS-0915153 and DOE Grant DE-SC0006903. Zhang is partially supported by the Dean Startup Fund, Academy of Mathematics and System Sciences, NSFC-91130011, and State High Tech Development Plan of China (863 Program) 2012AA01A309.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaozhe Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Lee, YJ., Xu, J. et al. On Adaptive Eulerian–Lagrangian Method for Linear Convection–Diffusion Problems. J Sci Comput 58, 90–114 (2014). https://doi.org/10.1007/s10915-013-9731-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9731-y

Keywords

Mathematics Subject Classification (2000)

Navigation