Skip to main content
Log in

Wavelet-Based De-noising of Positron Emission Tomography Scans

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A method to improve the signal-to-noise-ratio (SNR)of positron emission tomography (PET) scans is presented. A wavelet-based image decomposition technique decomposes an image into two parts, one which primarily contains the desired restored image and the other primarily the remaining unwanted portion of the image. Because the method is based on a texture extraction model that identifies the desired image in the space of bounded variation, these restorations are approximations of piecewise constant images, and are referred to as the cartoon part of the image. Here an approximation using a wavelet decomposition is used which allows solutions to be computed very efficiently. To process 3-D volume data a slice by slice approach in all three directions is adopted. Using a redundant discrete wavelet transform, 3-D restorations can be efficiently computed on standard desktop computers. The method is illustrated for PET images which have been reconstructed from simulated data using the expectation maximization algorithm. When post-processed by the presented wavelet decomposition they show a significant increase in SNR. It is concluded that the new wavelet based method can be used as an alternative to the well established de-noising of PET scans by smoothing with a Gaussian point spread function. In particular, if the volume data are reconstructed using the EM algorithm with a larger number of iterations than the number of iterations that would be used without post-processing, the 3-D images are sharper and show more detail. A MATLAB® based graphical user interface is provided that allows easy exploration of the impact of parameter choices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Statistical Parametric Mapping. Department of Imaging Neuroscience, University College London (2011). http://www.fil.ion.ucl.ac.uk/spm/

  2. Alexander, G.E., Chen, K., Pietrini, P., Rapoport, S.I., Reiman, E.M.: Longitudinal evaluation of cerebral metabolic decline in dementia: implications for using resting PET to measure outcome in long-term treatment studies of Alzheimer’s disease. Am. J. Psychiatr. 159, 738–745 (2002)

    Article  Google Scholar 

  3. Burrus, C.S., Gopinath, R.A., Guo, H.: Introduction to Wavelets and Wavelet Transforms: A Primer. Prentice Hall, Upper Saddle River (1998)

    Google Scholar 

  4. Chang, S.G., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9(9), 1532–1546 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, K., Lawson, M., Reiman, E.M., Feng, D., Huang, S.-C., Bandy, D., Ho, D., Yun, L.-S., Palant, A.: Generalized linear least square method for fast generation of myocardial blood flow parametric images with N-13 ammonia PET. IEEE Trans. Med. Imaging 17(2), 236–243 (1998)

    Article  Google Scholar 

  6. Cohen, A., Dahmen, W., Daubechies, I., DeVore, R.: Harmonic analysis of the space BV. Mat. Iberoam. 19, 235–263 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, A., Daubechies, I., Feauveau, J.-C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45(5), 485–560 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohen, A., DeVore, R., Petrushev, P., Xu, H.: Nonlinear Approximation and the Space \(\mathit{BV}(\mathcal{R}^{\in})\). Am. J. Math. 121, 587–628 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Combes, J.M., Grossmann, A., Tchamitchian, P. (eds.): Wavelets: Time-Frequency Methods and Phase Space: Proceedings of the International Conference, Marseille, France, 14–18 December 1987. Springer, Berlin, New York (1989)

    MATH  Google Scholar 

  10. Daubechies, I.: Ten Lectures on Wavelets, p. 3600. SIAM, Philadelphia (1992). University City Science Center, Philadelphia, Pennsylvania

    Book  MATH  Google Scholar 

  11. Daubechies, I., Teschke, G.: Wavelet based image decomposition by variational functionals. In: Frédéric, T. (ed.) Wavelet Applications in Industrial Processing. Proceedings of the SPIE, vol. 5266, pp. 94–105. SPIE Press, Bellingham (2004)

    Google Scholar 

  12. Daubechies, I., Teschke, G.: Variational image restoration by means of wavelets: simultaneous decomposition, deblurring, and denoising. Appl. Comput. Harmonic Anal. 19(1) (2005)

  13. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  14. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika (1994)

  15. Fowler, J.E.: The redundant discrete wavelet transform and additive noise. IEEE Signal Process. Lett. 12(9), 629–632 (2005)

    Article  Google Scholar 

  16. Grant, M., Boyd, S., Ye, Y.: In: Disciplined Convex Programming. Nonconvex Optimization and Its Applications, pp. 155–210. Springer, Berlin (2006)

    Google Scholar 

  17. Grant, M., Boyd, S., Ye, Y.: CVX: Matlab Software for Disciplined Convex Programming, September 2007

  18. Lin, J.-W., Laine, A.F., Bergmann, S.R.: Improving PET-based physiological quantification through methods of wavelet denoising. IEEE Trans. Biomed. Eng. 48(2), 202–212 (2001)

    Article  Google Scholar 

  19. Kaufman, L.: Implementing and accelerating the EM algorithm for positron emission tomography. IEEE Trans. Med. Imaging M1-6(6), 37–51 (1987)

    Article  Google Scholar 

  20. Khlifa, N., Gribaa, N., Mbazaa, I., Hamruoni, K.: A based Bayesian wavelet thresholding method to enhance nuclear imaging. Int. J. Biomed. Imaging 2009, 506120 (2009)

    Article  Google Scholar 

  21. Kwan, K.S., Evans, A.C., Pike, G.B.: MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans. Med. Imaging 18(11), 1085–1097 (1999)

    Article  Google Scholar 

  22. Lang, M., Guo, H., Odegard, J.E., Burrus, C.S., Wells, R.O. Jr.: Noise reduction using an undecimated discrete wavelet transform. IEEE Signal Process. Lett. 3(1), 10–12 (1996)

    Article  Google Scholar 

  23. Lefkimmiatis, S., Maragos, P., Papandreou, G.: Bayesian inference on multiscale models for Poisson intensity estimation: applications to photon-limited image denoising. IEEE Trans. Image Process. 18(8), 1724–1741 (2009)

    Article  MathSciNet  Google Scholar 

  24. Lieu, L., Vese, L.: Image restoration and decomposition via bounded total variation and negative Hilbert-Sobolev spaces. Appl. Math. Optim. 58(2), 167–193 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. University Lecture Series, vol. 22. AMS (2002)

  26. NRC: Mathematics and Physics of Emerging Biomedical Imaging. National Research Council, Institute of Medicine, National Academy Press, Washington (1996). http://www.nas.edu/

    Google Scholar 

  27. Osher, S., Sole, A., Vese, L.: Image decomposition and restoration using total variation minimization and the H 1 norm. Multiscale Model. Simul. 1(3), 349–370 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Phelps, M.E., Mazziotta, J., Schelbert, H.: Positron Emission Tomorgraphy and Autoradiography, Principles and Applications for the Brain and Heart. Raven Press, New York (1986)

    Google Scholar 

  29. Reiman, E.M., Caselli, R.J., Yun, L.-S., Chen, K., Bandy, D., Minoshima, S., Thibodeau, S., Osborne, D.: Preclinical evidence of a genetic risk factor for Alzhemer’s disease in apolipoprotein E type 4 homozygotes using positron emission tomography. N. Engl. J. Med. 334, 752–758 (1996)

    Article  Google Scholar 

  30. Roudenko, S.: Noise and texture detection in image processing. LANL report: W-7405-ENG-36 (2004)

  31. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  32. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging MI-1(2), 113–122 (1982)

    Article  Google Scholar 

  33. Shih, Y.Y., Chen, J.C., Liu, R.S.: Development of wavelet de-noising technique for PET images. Comput. Med. Imaging Graph. 29(4), 297–304 (2005)

    Article  Google Scholar 

  34. Silverman, D.H., Small, G.W., Chang, C.Y., Lu, C.S., Kung, D., Aburto, M.A., Chen, W., Czernin, J., Rapoport, S.I., Pietrini, P., Alexander, G.E., Schapiro, M.B., Jagust, W.J., Hoffman, J.M., Welsh-Bohmer, K.A., Alavi, A., Clark, C.M., Salmon, E., de Leon, M.J., Mielke, R., Cummings, J.L., Kowell, A.P., Gambhir, S.S., Hoh, C.K., Phelps, M.E., et al.: Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome. JAMA J. Am. Med. Assoc. 286(17), 2120–2127 (2001)

    Article  Google Scholar 

  35. Stefan, W., Roudenko, S., Chen, K., Renaut, R.A., Guo, H.: Software for Denoising of 3D SPM Analyse Volumes. Arizona State University, Phoenix (2008). http://mathpost.la.asu.edu/~stefan/spm_uv_gui.html

    Google Scholar 

  36. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999). Special issue on Interior Point Methods (CD supplement with software), http://sedumi.mcmaster.ca/

    Article  MathSciNet  Google Scholar 

  37. Toh, K., Tütüncü, R., Todd, M.: SDPT3 4.0 (beta) (software package). Technical report, Department of Mathematics National University of Singapore, September 2006. http://www.math.nus.edu.sg/~mattohkc/sdpt3.html

  38. Vardi, Y., Shepp, L.A., Kaufman, L.: A statistical model for positron emission tomography. J. Am. Stat. Assoc. 80, 8–20 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, Y., Yin, W., Zhang, Y.: A fast algorithm for image deblurring with total variation regularization. SIAM J. Imaging Sci. 1(3), 248–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhao, C., Chen, Z., Ye, X., Zhang, Y., Aburano, T., Tian, M., Zhang, H.: Imaging a pancreatic carcinoma xenograft model with 11C-acetate: a comparison study with 18F-FDG. Nucl Med Commun (August) (2009). Epub ahead of print

  41. Zubal, I.G., Harrell, C.R., Rattner, Z., Gindi, G., Hoffer, P.B.: Computerized three-dimensional segmented human anatomy. Med. Phys. 21(2), 299–302 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Stefan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefan, W., Chen, K., Guo, H. et al. Wavelet-Based De-noising of Positron Emission Tomography Scans. J Sci Comput 50, 665–677 (2012). https://doi.org/10.1007/s10915-011-9529-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9529-8

Keywords

Navigation