Skip to main content
Log in

A Mixed Finite Element Method for the Biharmonic Problem Using Biorthogonal or Quasi-Biorthogonal Systems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider a finite element method based on biorthogonal or quasi-biorthogonal systems for the biharmonic problem. The method is based on the primal mixed finite element method due to Ciarlet and Raviart for the biharmonic equation. Using different finite element spaces for the stream function and vorticity, this approach leads to a formulation only based on the stream function. We prove optimal a priori estimates for both stream function and vorticity, and present numerical results to demonstrate the efficiency of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Axelsson, O., Gustafsson, I.: An iterative solver for a mixed variable variational formulation of the (first) biharmonic problem. Comput. Methods Appl. Mech. Eng. 20, 9–16 (1997)

    Article  MathSciNet  Google Scholar 

  3. Babuška, I., Osborn, J., Pitkäranta, J.: Analysis of mixed methods using mesh dependent norms. Math. Comput. 35, 1039–1062 (1980)

    MATH  Google Scholar 

  4. Bernardi, C., Maday, Y., Patera, A.: A new nonconforming approach to domain decomposition: the mortar element method. In: H. B. et al. (eds.) Nonlinear Partial Differential Equations and Their Applications, pp. 13–51. Paris (1994)

  5. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    MATH  Google Scholar 

  6. Brenner, S., Sung, L.-Y.: C 0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22–23, 83–118 (2005)

    Article  MathSciNet  Google Scholar 

  7. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    MATH  Google Scholar 

  8. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978)

    MATH  Google Scholar 

  9. Ciarlet, P., Glowinski, R.: Dual iterative techniques for solving a finite element approximation of the biharmonic equation. Comput. Methods Appl. Mech. Eng. 5, 277–295 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ciarlet, P., Raviart, P.: A mixed finite element method for the biharmonic equation. In: Boor, C.D. (ed.) Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 125–143. Academic Press, New York (1974),

    Google Scholar 

  11. Davini, C., Pitacco, I.: An unconstrained mixed method for the biharmonic problem. SIAM J. Numer. Anal. 38, 820–836 (2001)

    Article  MathSciNet  Google Scholar 

  12. Engel, G., Garikipati, K., Hughes, T., Larson, M., Mazzei, L., Taylor, R.: Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191, 3669–3750 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Falk, R.: Approximation of the biharmonic equation by a mixed finite element method. SIAM J. Numer. Anal. 15, 556–567 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  14. Falk, R., Osborn, J.: Error estimates for mixed methods. RAIRO Anal. Numér. 14, 249–277 (1980)

    MATH  MathSciNet  Google Scholar 

  15. Galántai, A.: Projectors and Projection Methods. Kluwer Academic, Dordrecht (2003)

    Google Scholar 

  16. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986)

    MATH  Google Scholar 

  17. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, vol. 24. Pitman, Boston (1985). (Advanced Publishing Program)

    MATH  Google Scholar 

  18. Kim, C., Lazarov, R., Pasciak, J., Vassilevski, P.: Multiplier spaces for the mortar finite element method in three dimensions. SIAM J. Numer. Anal. 39, 519–538 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lamichhane, B.: Higher order mortar finite elements with dual Lagrange multiplier spaces and applications. PhD thesis, Universität Stuttgart (2006)

  20. Lamichhane, B., Stevenson, R., Wohlmuth, B.: Higher order mortar finite element methods in 3D with dual Lagrange multiplier bases. Numer. Math. 102, 93–121 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lamichhane, B., Wohlmuth, B.: A quasi-dual Lagrange multiplier space for serendipity mortar finite elements in 3D. Math. Model. Numer. Anal. 38, 73–92 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lamichhane, B., Wohlmuth, B.: Biorthogonal bases with local support and approximation properties. Math. Comput. 76, 233–249 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Li, J.: Full-order convergence of a mixed finite element method for fourth-order elliptic equations. J. Math. Anal. Appl. 230, 329–349 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, Vol. I. Springer, New York (1972). Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181

    MATH  Google Scholar 

  25. Mihajlović, M., Silvester, D.: Efficient parallel solvers for the biharmonic equation. Parallel Comput. 30, 35–55 (2004)

    Article  MathSciNet  Google Scholar 

  26. Monk, P.: A mixed finite element method for the biharmonic equation. SIAM J. Numer. Anal. 24, 737–749 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  27. Scholz, R.: A mixed method for 4th order problems using linear finite elements. RAIRO Anal. Numér. 12, 85–90 (1978)

    MATH  MathSciNet  Google Scholar 

  28. Scott, L., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Silvester, D., Mihajlović, M.: A black-box multigrid preconditioner for the biharmonic equation. BIT Numer. Math. 44, 151–163 (2004)

    Article  MATH  Google Scholar 

  30. Szyld, D.: The many proofs of an identity on the norm of oblique projections. Numer. Algorithms 42, 309–323 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wells, G., Kuhl, E., Garikipati, K.: A discontinuous Galerkin method for the Cahn-Hilliard equation. J. Comput. Phys. 218, 860–877 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Wohlmuth, B.: Discretization Methods and Iterative Solvers Based on Domain Decomposition. LNCS, vol. 17. Springer, Heidelberg (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bishnu P. Lamichhane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamichhane, B.P. A Mixed Finite Element Method for the Biharmonic Problem Using Biorthogonal or Quasi-Biorthogonal Systems. J Sci Comput 46, 379–396 (2011). https://doi.org/10.1007/s10915-010-9409-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9409-7

Keywords

Navigation