Skip to main content
Log in

Tracking Fronts in One and Two-phase Incompressible Flows Using an Adaptive Mesh Refinement Approach

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Numerical computation is an essential tool for describing multi-phase and multi-scale flows accurately. One possibility consists in using very fine monogrids to obtain accurate solutions. However, this approach is very costly in time and memory size. As an alternative, an Adaptive Mesh Refinement method (AMR) has been developed in order to follow either interfaces in two-phase flows or concentration of a pollutant in one-phase flows. This method has also been optimized to reduce time and memory costs. Several 2D cases have been studied to validate and show the efficiency of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger, M.J., Colella, P.: Local adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 82, 64–84 (1989)

    Article  MATH  Google Scholar 

  2. Caltagirone, J.P., Breil, J.: A vector projection method for solving the Navier-Stokes equations. C. R. Acad. Sci. Paris, Ser. II b, Mec. Fluides Numér. 327, 1179–1184 (1999)

    MATH  Google Scholar 

  3. Delage, S., Vincent, S., Caltagirone, J.P., Heliot, J.P.: A hybrid linking approach for solving the conservation equations with an Adaptive Mesh Refinement method. J. Comput. Appl. Math. 191(2), 280–296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Delage-Santacreu, S.: A hybrid Adaptive Mesh Refinement method to track interfaces in incompressible flows. PhD thesis, Universite Bordeaux 1 (2006)

  5. Fortin, M., Glowinsky, R.: Methodes de Lagrangien augmente. Application a la Resolution Numerique de Problemes aux Limites. Methodes Mathematiques de l’Informatique, vol. 1. Dunod, Paris (1982)

    Google Scholar 

  6. Gustafsson, I.: On first and second order symmetric factorization methods for the solution of elliptic difference equations. Chalmers University of Technology (1978)

  7. Hackbush, W.: Local defect correction method and domain decomposition techniques, in defect correction methods: Theory and applications. In: Bomer, K., Stetter, H.J. (eds.) Computation Supplementation, vol. 5, pp. 89–113. Springer, Vienna (1984)

    Google Scholar 

  8. Harlow, H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)

    Article  Google Scholar 

  9. Hay, A., Visonneau, M.: Computation of free surface flows with local mesh adaptation. Int. J. Numer. Methods Fluids 49, 785–816 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hirsh, C.: Numerical Computation of Internal and External Flows, vol. 2: Computational Methods for Inviscid and Viscous Flows. Lectures in Mathematics, Landford. Birkhauser, Zurich (1992)

    Google Scholar 

  11. Hirt, C.W., Nichols, B.D.: Volume of fluids (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    Article  MATH  Google Scholar 

  12. Ishii, E., Ishikawa, T., Tanabe, Y.: Hybrid Particle/Grid method for predicting motion of micro and macro-free surfaces. J. Fluid Eng. 128, 921–930 (2006)

    Article  Google Scholar 

  13. Kataoka, I.: Local instant formulation of two phase flow. Int. J. Multiph. Flow 12, 745–758 (1986)

    Article  MATH  Google Scholar 

  14. Leveque, R.J.: Numerical Methods for Conservation Laws. Wiley, Chichester (1990)

    MATH  Google Scholar 

  15. Losasso, F., Fedkiv, R., Osher, S.: Spatially adaptive techniques for level set methods and incompressible flow. Comput. Fluids 35, 995–1010 (2006)

    Article  MathSciNet  Google Scholar 

  16. Martin, J.C., Moyce, W.J.: An experimental study of the collapse of liquids columns on a rigid horizontal plane. Phys. Trans. Ser. A, Math. Phys. Sci. 244, 312–325 (1952)

    Article  MathSciNet  Google Scholar 

  17. Minion, M.L.: A projection method for locally refined grids. J. Comput. Phys. 127, 158 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Series in Computational Methods in Mechanics and Thermal Sciences, vol. 1. Hemisphere, Washington (1980)

    MATH  Google Scholar 

  19. Peyret, R., Taylor, T.D.: Computational Methods for Fluid Flows. Springer Series in Computational Physics. Springer, New York (1983)

    Google Scholar 

  20. Popinet, S.: Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190, 572–600 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stansby, P.K., Chegini, A., Barnes, T.C.D.: The initial stages of dam-break flow. J. Fluid Mech. 374, 407–424 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Strain, J.: Tree methods for moving interfaces. J. Comput. Phys. 151, 616–648 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Van Der Vorst, H.A.: A fast and smoothly converging variant of BI-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

    Article  MATH  Google Scholar 

  24. Vincent, S.: Modelling incompressible flows of non-miscible fluids. PhD thesis, Universite Bordeaux 1 (1999)

  25. Vincent, S., Caltagirone, J.P.: Efficient solving method for unsteady incompressible interfacial flow problems. Int. J. Numer. Methods Fluids 30, 795–811 (1999)

    Article  MATH  Google Scholar 

  26. Vincent, S., Caltagirone, J.P.: One Cell Local Multigrid method for solving unsteady incompressible multi-phase flows. J. Comput. Phys. 163, 172–215 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vincent, S., Caltagirone, J.P., Lubin, P., Randrianarivelo, T.N.: An adaptive augmented Lagrangien method for three dimensional multimaterial flows. Comput. Fluids 33, 1273–1289 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Youngs, D.L.: Time-Dependent Multimaterial Flow with Large Fluid Distorsion. Morton and Baines, New York (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Delage-Santacreu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delage-Santacreu, S., Vincent, S. & Caltagirone, JP. Tracking Fronts in One and Two-phase Incompressible Flows Using an Adaptive Mesh Refinement Approach. J Sci Comput 41, 221 (2009). https://doi.org/10.1007/s10915-009-9294-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-009-9294-0

Keywords

Navigation