Skip to main content
Log in

A Mass-Conservative Characteristic Finite Element Scheme for Convection-Diffusion Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop a mass-conservative characteristic finite element scheme for convection diffusion problems. This scheme preserves the mass balance identity. It is proved that the scheme is essentially unconditionally stable and convergent with first order in time increment and k-th order in element size when the P k element is employed. Some numerical examples are presented to show the efficiency of the present scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbogast, T., Wheeler, M.F.: A characteristics-mixed finite element method for advection-dominated transport problems. SIAM J. Numer. Anal. 32, 404–424 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baba, K., Tabata, M.: On a conservative upwind finite element scheme for convective diffusion equations. RAIRO Anal. Numér. (Numer. Anal.) 15, 3–35 (1981)

    MATH  MathSciNet  Google Scholar 

  3. Boukir, K., Maday, Y., Metivet, B., Razafindrakoto, E.: A high-order characteristics/finite element method for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 25, 1421–1454 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, New York (2002)

    Google Scholar 

  6. Douglas, J. Jr., Huang, T.C., Pereira, F.: The modified method of characteristics with adjusted advection. Numer. Math. 83, 353–369 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Douglas, J., Jr., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ewing, R.E., Wang, H.: An optimal-order estimate for Eulerian-Lagrangian localized adjoint methods for variable-coefficient advection-reaction problems. SIAM J. Numer. Anal. 33, 318–348 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Glowinski, R.: Numerical Methods for Fluids (Part 3). Handbook of Numerical Analysis, vol. IX, Ciarlet, P.G., Lions, J.L. (eds.). Elsevier, Amsterdam (2003).

    Google Scholar 

  10. Ikeda, T.: Maximum Principle in Finite Element Models for Convection-Diffusion Phenomena. Lecture Notes in Numerical and Applied Analysis, vol. 4. Kinokuniya/North-Holland, Tokyo (1983)

    MATH  Google Scholar 

  11. Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge Univ. Press, Cambridge (1987)

    MATH  Google Scholar 

  12. Kanayama, H.: Discrete models for salinity distribution in a bay: Conservation laws and maximum principle. Theor. Appl. Mech. (Univ. Tokyo Press) 28, 559–579 (1980)

    Google Scholar 

  13. Pironneau, O.: On the transport-diffusion algorithm and its application to the Navier-Stokes equations. Numer. Math. 38, 309–332 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pironneau, O.: Finite Element Methods for Fluids. Wiley, Chichester (1989)

    Google Scholar 

  15. Rui, H., Tabata, M.: A second order characteristic finite element scheme for convection diffusion problems. Numer. Math. 92, 161–177 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Russell, T.F.: Time stepping along characteristics with incomplete iteration for a Galerkin approximate of miscible displacement in porous media. SIAM J. Numer. Anal. 22, 970–1013 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tabata, M.: A finite element approximation corresponding to the upwind differencing. Memoirs Numer. Math. 4, 47–63 (1977)

    MATH  MathSciNet  Google Scholar 

  18. Tabata, M.: L -analysis of the finite element method. In: Fujita, H., Yamaguti, M. (eds.) Numerical Analysis of Evolution Equations. Lecture Notes in Numerical and Applied Analysis, vol. 1, pp. 25–62. Kinokuniya, Tokyo (1979)

    Google Scholar 

  19. Tabata, M., Fujima, S.: An upwind finite element scheme for high-Reynolds-number flows. Int. J. Numer. Methods Fluids 12, 305–322 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Viozat, C., Held, C., Mer, K., Dervieux, A.: On vertex-centered unstructured finite-volume methods for stretched anisotropic triangulations. Comput. Methods Appl. Mech. Eng. 190, 4733–4766 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wang, H., Dahle, H.K., Ewing, R.E., Espedal, M.S., Sharpley, R.C., Man, S.: An ELLAM scheme for advection-diffusion equations in two dimensions. SIAM J. Sci. Comput. 20, 2160–2194 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxing Rui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rui, H., Tabata, M. A Mass-Conservative Characteristic Finite Element Scheme for Convection-Diffusion Problems. J Sci Comput 43, 416–432 (2010). https://doi.org/10.1007/s10915-009-9283-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-009-9283-3

Keywords

Navigation