Skip to main content

Advertisement

Log in

Biology of Glucose Transport in the Mammary Gland

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Glucose is the major precursor of lactose, which is synthesized in Golgi vesicles of mammary secretory alveolar epithelial cells during lactation. Glucose is taken up by mammary epithelial cells through a passive, facilitative process, which is driven by the downward glucose concentration gradient across the plasma membrane. This process is mediated by facilitative glucose transporters (GLUTs), of which there are 14 known isoforms. Mammary glands mainly express GLUT1 and GLUT8, and GLUT1 is the predominant isoform with a K m of ~10 mM and transport activity for mannose and galactose in addition to glucose. Mammary glucose transport activity increases dramatically from the virgin state to the lactation state, with a concomitant increase in GLUT expression. The increased GLUT expression during lactogenesis is not stimulated by the accepted lactogenic hormones. New evidence indicates that a possible low oxygen tension resulting from increased metabolic rate and oxygen consumption may play a major role in stimulating glucose uptake and GLUT1 expression in mammary epithelial cells during lactogenesis. In addition to its primary presence on the plasma membrane, GLUT1 is also expressed on the Golgi membrane of mammary epithelial cells and is likely involved in facilitating the uptake of glucose and galactose to the site of lactose synthesis. Because lactose synthesis dictates milk volume, regulation of GLUT expression and trafficking represents potentially fruitful areas for further research in dairy production. In addition, this research will have pathological implications for the treatment of breast cancer because glucose uptake and GLUT expression are up-regulated in breast cancer cells to accommodate the increased glucose need.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2-DG:

2-deoxy-D-glucose

3-O-MG:

3-0-methyl-D-glucose

α-LA:

α-lactalbumin

β4Gal-T1:

β1,4-galactosyltransferase

G6P:

Glucose-6-phosphate

GLUT:

Facilitative glucose transporter

MBF:

Mammary blood flow

MECs:

Mammary alveolar epithelial cells

NADPH:

Nicotinamide adenine dinucleotide phosphate

SGLT:

Na+/glucose cotransporter

References

  1. Cardenas ML, Cornish-Bowden A, Ureta T. Evolution and regulatory role of the hexokinases. Biochim Biophys Acta. 1998;1401(3):242–64.

    CAS  PubMed  Google Scholar 

  2. Scott RA, Beuman DE, Clark JH. Cellular gluconeogenesis by lactating bovine mammary tissue. J Dairy Sci. 1976;59(1):50–6.

    CAS  PubMed  Google Scholar 

  3. Threadgold LC, Kuhn NJ. Glucose-6-phosphate hydrolysis by lactating rat mammary gland. Int J Biochem. 1979;10(8):683–5.

    CAS  PubMed  Google Scholar 

  4. Kronfeld DS. Major metabolic determinants of milk volume, mammary efficiency, and spontaneous ketosis in dairy cows. J Dairy Sci. 1982;65(11):2204–12. doi:10.3168/jds.S0022-0302(82)82483-1.

    CAS  PubMed  Google Scholar 

  5. Rigout S, Lemosquet S, van Eys JE, Blum JW, Rulquin H. Duodenal glucose increases glucose fluxes and lactose synthesis in grass silage-fed dairy cows. J Dairy Sci. 2002;85(3):595–606. doi:10.3168/jds.S0022-0302(02)74113-1.

    CAS  PubMed  Google Scholar 

  6. Bell AW, Bauman DE. Adaptations of glucose metabolism during pregnancy and lactation. J Mammary Gland Biol Neoplasia. 1997;2(3):265–78.

    CAS  PubMed  Google Scholar 

  7. Annison EF, Linzell JL. The oxidation and utilization of glucose and acetate by the mammary gland of the goat in relation to their overall metabolism and milk formation. J Physiol. 1964;175:372–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Stacey A, Schnieke A, Kerr M, Scott A, McKee C, Cottingham I, et al. Lactation is disrupted by alpha-lactalbumin deficiency and can be restored by human alpha-lactalbumin gene replacement in mice. Proc Natl Acad Sci U S A. 1995;92(7):2835–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Kuhn NJ, Carrick DT, Wilde CJ. Lactose synthesis: the possibilities of regulation. J Dairy Sci. 1980;63(2):328–36. doi:10.3168/jds.S0022-0302(80)82934-1.

    CAS  PubMed  Google Scholar 

  10. Davis SR, Collier RJ. Mammary blood flow and regulation of substrate supply for milk synthesis. J Dairy Sci. 1985;68(4):1041–58. doi:10.3168/jds.S0022-0302(85)80926-7.

    CAS  PubMed  Google Scholar 

  11. Amato PA, Loizzi RF. The effects of cytochalasin B on glucose transport and lactose synthesis in lactating mammary gland slices. Eur J Cell Biol. 1979;20(2):150–5.

    CAS  PubMed  Google Scholar 

  12. Threadgold LC, Coore HG, Kuhn NJ. Monosaccharide transport into lactating-rat mammary acini. Biochem J. 1982;204(2):493–501.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Prosser CG. Mechanism of the decrease in hexose transport by mouse mammary epithelial cells caused by fasting. Biochem J. 1988;249(1):149–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Xiao C, Cant JP. Glucose transporter in bovine mammary epithelial cells is an asymmetric carrier that exhibits cooperativity and trans-stimulation. Am J Physiol Cell Physiol. 2003;285(5):C1226–34. doi:10.1152/ajpcell.00190.2003.

    CAS  PubMed  Google Scholar 

  15. Xiao C, Quinton VM, Cant JP. Description of glucose transport in isolated bovine mammary epithelial cells by a three-compartment model. Am J Physiol Cell Physiol. 2004;286(4):C792–7. doi:10.1152/ajpcell.00356.2003.

    CAS  PubMed  Google Scholar 

  16. Loizzi RF, de Pont JJ, Bonting SL. Inhibition by cyclic AMP of lactose production in lactating guinea pig mammary gland slices. Biochim Biophys Acta. 1975;392(1):20–5.

    CAS  PubMed  Google Scholar 

  17. Ramakrishnan B, Qasba PK. Crystal structure of lactose synthase reveals a large conformational change in its catalytic component, the beta1,4-galactosyltransferase-I. J Mol Biol. 2001;310(1):205–18. doi:10.1006/jmbi.2001.4757.

    CAS  PubMed  Google Scholar 

  18. Ramakrishnan B, Shah PS, Qasba PK. alpha-Lactalbumin (LA) stimulates milk beta-1,4-galactosyltransferase I (beta 4Gal-T1) to transfer glucose from UDP-glucose to N-acetylglucosamine. Crystal structure of beta 4Gal-T1 x LA complex with UDP-Glc. J Biol Chem. 2001;276(40):37665–71.

    CAS  PubMed  Google Scholar 

  19. Sasaki M, Keenan TW. Membranes of mammary gland–XVIII. 2-Deoxy-D-glucose and 5-thio-D-glucose decrease lactose content, inhibit secretory maturation and depress protein synthesis and secretion in lactating rat mammary gland. Int J Biochem. 1978;9(8):579–88.

    CAS  PubMed  Google Scholar 

  20. Chaiyabutr N, Faulkner A, Peaker M. The utilization of glucose for the synthesis of milk components in the fed and starved lactating goat in vivo. Biochem J. 1980;186(1):301–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Forsberg NE, Baldwin RL, Smith NE. Roles of glucose and its interactions with acetate in maintenance and biosynthesis in bovine mammary tissue. J Dairy Sci. 1985;68(10):2544–9. doi:10.3168/jds.S0022-0302(85)81135-8.

    CAS  PubMed  Google Scholar 

  22. Sunehag AL, Louie K, Bier JL, Tigas S, Haymond MW. Hexoneogenesis in the human breast during lactation. J Clin Endocrinol Metab. 2002;87(1):297–301.

    CAS  PubMed  Google Scholar 

  23. Katz J, Wals PA, Van de Velde RL. Lipogenesis by acini from mammary gland of lactating rats. J Biol Chem. 1974;249(22):7348–57.

    CAS  PubMed  Google Scholar 

  24. Linzell JL, Mepham TB, Annison EF, West CE. Mammary metabolism in lactating sows: arteriovenous differences of milk precursors and the mammary metabolism of [14C]glucose and [14C]acetate. Br J Nutr. 1969;23(2):319–32.

    CAS  PubMed  Google Scholar 

  25. Linzell JL. Mammary-gland blood flow and oxygen, glucose and volatile fatty acid uptake in the conscious goat. J Physiol. 1960;153:492–509.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Cant JP, Trout DR, Qiao F, Purdie NG. Milk synthetic response of the bovine mammary gland to an increase in the local concentration of arterial glucose. J Dairy Sci. 2002;85(3):494–503.

    CAS  PubMed  Google Scholar 

  27. Mepham TB. Physiological aspects of lactation. In: Mepham TB, editor. Biochemistry of lactation. Amsterdam: Elsevier; 1983. p. 3–28.

    Google Scholar 

  28. Bauman DE, Elliot JM. Control of nutrient partitioning in lactating ruminants. In: Mepham TB, editor. Biochemistry of lactation. Amsterdam: Elsevier; 1983. p. 437–68.

    Google Scholar 

  29. Nielsen MO, Madsen TG, Hedeboe AM. Regulation of mammary glucose uptake in goats: role of mammary gland supply, insulin, IGF-1 and synthetic capacity. J Dairy Res. 2001;68(3):337–49.

    CAS  PubMed  Google Scholar 

  30. Davis AJ, Fleet IR, Goode JA, Hamon MH, Walker FM, Peaker M. Changes in mammary function at the onset of lactation in the goat: correlation with hormonal changes. J Physiol. 1979;288:33–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Delamaire E, Guinard-Flament J. Increasing milking intervals decreases the mammary blood flow and mammary uptake of nutrients in dairy cows. J Dairy Sci. 2006;89(9):3439–46. doi:10.3168/jds.S0022-0302(06)72381-5.

    CAS  PubMed  Google Scholar 

  32. Delamaire E, Guinard-Flament J. Longer milking intervals alter mammary epithelial permeability and the Udder’s ability to extract nutrients. J Dairy Sci. 2006;89(6):2007–16. doi:10.3168/jds.S0022-0302(06)72268-8.

    CAS  PubMed  Google Scholar 

  33. Miller PS, Reis BL, Calvert CC, DePeters EJ, Baldwin RL. Patterns of nutrient uptake by the mammary glands of lactating dairy cows. J Dairy Sci. 1991;74(11):3791–9. doi:10.3168/jds.S0022-0302(91)78571-8.

    CAS  PubMed  Google Scholar 

  34. Galindo CE, Ouellet DR, Pellerin D, Lemosquet S, Ortigues-Marty I, Lapierre H. Effect of amino acid or casein supply on whole-body, splanchnic, and mammary glucose kinetics in lactating dairy cows. J Dairy Sci. 2011;94(11):5558–68. doi:10.3168/jds.2010-3978.

    CAS  PubMed  Google Scholar 

  35. Doepel L, Lapierre H. Changes in production and mammary metabolism of dairy cows in response to essential and nonessential amino acid infusions. J Dairy Sci. 2010;93(7):3264–74. doi:10.3168/jds.2009-3033.

    CAS  PubMed  Google Scholar 

  36. Davis SR, Collier RJ, McNamara JP, Head HH, Croom WJ, Wilcox CJ. Effects of thyroxine and growth hormone treatment of dairy cows on mammary uptake of glucose, oxygen and other milk fat precursors. J Anim Sci. 1988;66(1):80–9.

    CAS  PubMed  Google Scholar 

  37. Faulkner A. Changes in plasma and milk concentrations of glucose and IGF-1 in response to exogenous growth hormone in lactating goats. J Dairy Res. 1999;66(2):207–14.

    CAS  PubMed  Google Scholar 

  38. Hove K. Effects of hyperinsulinemia on lactose secretion and glucose uptake by the goat mammary gland. Acta Physiol Scand. 1978;104(4):422–30.

    CAS  PubMed  Google Scholar 

  39. Tesseraud S, Grizard J, Makarski B, Debras E, Bayle G, Champredon C. Effect of insulin in conjunction with glucose, amino acids and potassium on net metabolism of glucose and amino acids in the goat mammary gland. J Dairy Res. 1992;59(2):135–49.

    CAS  PubMed  Google Scholar 

  40. Neville MC, Hay WW, Fennessey P. Physiological significance of the concentration of human milk glucose. Protoplasma. 1990;159:118–28.

    CAS  Google Scholar 

  41. Laarveld B, Christensen DA, Brockman RP. The effect of insulin on net metabolism of glucose and amino acids by the bovine mammary gland. Endocrinology. 1981;108(6):2217–21.

    CAS  PubMed  Google Scholar 

  42. Neville MC, Sawicki VS, Hay Jr WW. Effects of fasting, elevated plasma glucose and plasma insulin concentrations on milk secretion in women. J Endocrinol. 1993;139(1):165–73.

    CAS  PubMed  Google Scholar 

  43. Lemosquet S, Delamaire E, Lapierre H, Blum JW, Peyraud JL. Effects of glucose, propionic acid, and nonessential amino acids on glucose metabolism and milk yield in Holstein dairy cows. J Dairy Sci. 2009;92(7):3244–57. doi:10.3168/jds.2008-1610.

    CAS  PubMed  Google Scholar 

  44. Hurtaud C, Rulquin H, Verite R. Effects of graded duodenal infusions of glucose on yield and composition of milk from dairy cows. 1. Diets based on corn silage. J Dairy Sci. 1998;81(12):3239–47.

    CAS  PubMed  Google Scholar 

  45. Hurtaud C, Lemosquet S, Rulquin H. Effect of graded duodenal infusions of glucose on yield and composition of milk from dairy cows. 2. Diets based on grass silage. J Dairy Sci. 2000;83(12):2952–62.

    CAS  PubMed  Google Scholar 

  46. Prosser CG, Davis SR, Farr VC, Lacasse P. Regulation of blood flow in the mammary microvasculature. J Dairy Sci. 1996;79(7):1184–97.

    CAS  PubMed  Google Scholar 

  47. Mepham TB, Lawrence SE, Peters AR, Hart IC. Effects of exogenous growth hormone on mammary function in lactating goats. Horm Metab Res. 1984;16(5):248–53. doi:10.1055/s-2007-1014757.

    CAS  PubMed  Google Scholar 

  48. Davis SR, Collier RJ, McNamara JP, Head HH, Sussman W. Effects of thyroxine and growth hormone treatment of dairy cows on milk yield, cardiac output and mammary blood flow. J Anim Sci. 1988;66(1):70–9.

    CAS  PubMed  Google Scholar 

  49. Lacasse P, Prosser CG. Mammary blood flow does not limit milk yield in lactating goats. J Dairy Sci. 2003;86(6):2094–7. doi:10.3168/jds.S0022-0302(03)73798-9.

    CAS  PubMed  Google Scholar 

  50. Prosser CG, Farr VC, Davis SR. Increased mammary blood flow in the lactating goat induced by parathyroid hormone-related protein. Exp Physiol. 1994;79(4):565–70.

    CAS  PubMed  Google Scholar 

  51. Bangham AD, de Gier J, Greville GD. Osmotic properties and water permeability of phospholipid liquid crystals. Chem Phys Lipids. 1967;1:225–46.

    CAS  Google Scholar 

  52. Jahreis K, Pimentel-Schmitt EF, Bruckner R, Titgemeyer F. Ins and outs of glucose transport systems in eubacteria. FEMS Microbiol Rev. 2008;32(6):891–907. doi:10.1111/j.1574-6976.2008.00125.x.

    CAS  PubMed  Google Scholar 

  53. Maier A, Volker B, Boles E, Fuhrmann GF. Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res. 2002;2(4):539–50.

    CAS  PubMed  Google Scholar 

  54. Widdas WF. Old and new concepts of the membrane transport for glucose in cells. Biochim Biophys Acta. 1988;947(3):385–404.

    CAS  PubMed  Google Scholar 

  55. Zhao FQ, Keating AF. Functional properties and genomics of glucose transporters. Curr Genomics. 2007;8(2):113–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91(2):733–94. doi:10.1152/physrev.00055.2009.

    CAS  PubMed  Google Scholar 

  57. Wright EM. Glucose transport families SLC5 and SLC50. Mol Asp Med. 2013;34(2–3):183–96. doi:10.1016/j.mam.2012.11.002.

    CAS  Google Scholar 

  58. Hummel CS, Lu C, Loo DD, Hirayama BA, Voss AA, Wright EM. Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2. Am J Physiol Cell Physiol. 2011;300(1):C14–21. doi:10.1152/ajpcell.00388.2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Raja MM, Tyagi NK, Kinne RK. Phlorizin recognition in a C-terminal fragment of SGLT1 studied by tryptophan scanning and affinity labeling. J Biol Chem. 2003;278(49):49154–63. doi:10.1074/jbc.M306881200.

    CAS  PubMed  Google Scholar 

  60. Xia X, Lin JT, Kinne RK. Binding of phlorizin to the isolated C-terminal extramembranous loop of the Na+/glucose cotransporter assessed by intrinsic tryptophan fluorescence. Biochemistry. 2003;42(20):6115–20. doi:10.1021/bi020695b.

    CAS  PubMed  Google Scholar 

  61. Loo DD, Zeuthen T, Chandy G, Wright EM. Cotransport of water by the Na+/glucose cotransporter. Proc Natl Acad Sci U S A. 1996;93(23):13367–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Leung DW, Loo DD, Hirayama BA, Zeuthen T, Wright EM. Urea transport by cotransporters. J Physiol. 2000;528(Pt 2):251–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Diez-Sampedro A, Hirayama BA, Osswald C, Gorboulev V, Baumgarten K, Volk C, et al. A glucose sensor hiding in a family of transporters. Proc Natl Acad Sci U S A. 2003;100(20):11753–8. doi:10.1073/pnas.1733027100.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Vallon V, Platt KA, Cunard R, Schroth J, Whaley J, Thomson SC, et al. SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol. 2011;22(1):104–12. doi:10.1681/ASN.2010030246.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Echevarria M, Verkman AS. Optical measurement of osmotic water transport in cultured cells. Role of glucose transporters. J Gen Physiol. 1992;99(4):573–89.

    CAS  PubMed  Google Scholar 

  66. Kim YK, Illsley NP, Verkman AS. Rapid fluorescence assay of glucose and neutral solute transport using an entrapped volume indicator. Anal Biochem. 1988;172(2):403–9.

    CAS  PubMed  Google Scholar 

  67. Krupka RM. Asymmetrical binding of phloretin to the glucose transport system of human erythrocytes. J Membr Biol. 1985;83(1–2):71–80.

    CAS  PubMed  Google Scholar 

  68. Pao SS, Paulsen IT, Saier Jr MH. Major facilitator superfamily. Microbiol Mol Biol Rev. 1998;62(1):1–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Reddy VS, Shlykov MA, Castillo R, Sun EI, Saier Jr MH. The major facilitator superfamily (MFS) revisited. FEBS J. 2012;279(11):2022–35. doi:10.1111/j.1742-4658.2012.08588.x.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 2013;34(2–3):121–38. doi:10.1016/j.mam.2012.07.001.

    CAS  PubMed  Google Scholar 

  71. Klepper J, Voit T. Facilitated glucose transporter protein type 1 (GLUT1) deficiency syndrome: impaired glucose transport into brain-a review. Eur J Pediatr. 2002;161(6):295–304. doi:10.1007/s00431-002-0939-3.

    CAS  PubMed  Google Scholar 

  72. Illsley NP. Glucose transporters in the human placenta. Placenta. 2000;21(1):14–22. doi:10.1053/plac.1999.0448.

    CAS  PubMed  Google Scholar 

  73. Colville CA, Seatter MJ, Jess TJ, Gould GW, Thomas HM. Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors. Biochem J. 1993;290(3):701–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Hosokawa M, Thorens B. Glucose release from GLUT2-null hepatocytes: characterization of a major and a minor pathway. Am J Physiol Endocrinol Metab. 2002;282(4):E794–801. doi:10.1152/ajpendo.00374.2001.

    CAS  PubMed  Google Scholar 

  75. Burcelin R, del Carmen Munoz M, Guillam MT, Thorens B. Liver hyperplasia and paradoxical regulation of glycogen metabolism and glucose-sensitive gene expression in GLUT2-null hepatocytes. Further evidence for the existence of a membrane-based glucose release pathway. J Biol Chem. 2000;275(15):10930–6.

    CAS  PubMed  Google Scholar 

  76. Kellett GL, Brot-Laroche E, Mace OJ, Leturque A. Sugar absorption in the intestine: the role of GLUT2. Annu Rev Nutr. 2008;28:35–54. doi:10.1146/annurev.nutr.28.061807.155518.

    CAS  PubMed  Google Scholar 

  77. Cramer SC, Pardridge WM, Hirayama BA, Wright EM. Colocalization of GLUT2 glucose transporter, sodium/glucose cotransporter, and gamma-glutamyl transpeptidase in rat kidney with double-peroxidase immunocytochemistry. Diabetes. 1992;41(6):766–70.

    CAS  PubMed  Google Scholar 

  78. Mounien L, Marty N, Tarussio D, Metref S, Genoux D, Preitner F, et al. Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons. FASEB J. 2010;24(6):1747–58. doi:10.1096/fj.09-144923.

    CAS  PubMed  Google Scholar 

  79. Garcia M, Millan C, Balmaceda-Aguilera C, Castro T, Pastor P, Montecinos H, et al. Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. J Neurochem. 2003;86(3):709–24.

    PubMed  Google Scholar 

  80. Burcelin R, Dolci W, Thorens B. Glucose sensing by the hepatoportal sensor is GLUT2-dependent: in vivo analysis in GLUT2-null mice. Diabetes. 2000;49(10):1643–8.

    CAS  PubMed  Google Scholar 

  81. Sweet IR, Matschinsky FM. Are there kinetic advantages of GLUT2 in pancreatic glucose sensing? Diabetologia. 1997;40(1):112–9. doi:10.1007/s001250050652.

    CAS  PubMed  Google Scholar 

  82. McCall AL, Van Bueren AM, Moholt-Siebert M, Cherry NJ, Woodward WR. Immunohistochemical localization of the neuron-specific glucose transporter (GLUT3) to neuropil in adult rat brain. Brain Res. 1994;659(1–2):292–7.

    CAS  PubMed  Google Scholar 

  83. Shepherd PR, Gould GW, Colville CA, McCoid SC, Gibbs EM, Kahn BB. Distribution of GLUT3 glucose transporter protein in human tissues. Biochem Biophys Res Commun. 1992;188(1):149–54.

    CAS  PubMed  Google Scholar 

  84. Leto D, Saltiel AR. Regulation of glucose transport by insulin: traffic control of GLUT4. Nat Rev Mol Cell Biol. 2012;13(6):383–96. doi:10.1038/nrm3351.

    CAS  PubMed  Google Scholar 

  85. Bogan JS. Regulation of glucose transporter translocation in health and diabetes. Annu Rev Biochem. 2012;81:507–32. doi:10.1146/annurev-biochem-060109-094246.

    CAS  PubMed  Google Scholar 

  86. Burant CF, Takeda J, Brot-Laroche E, Bell GI, Davidson NO. Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem. 1992;267(21):14523–6.

    CAS  PubMed  Google Scholar 

  87. Davidson NO, Hausman AM, Ifkovits CA, Buse JB, Gould GW, Burant CF, et al. Human intestinal glucose transporter expression and localization of GLUT5. Am J Physiol. 1992;262(3 Pt 1):C795–800.

    CAS  PubMed  Google Scholar 

  88. Zhao F-Q, Miller PJ, Wall EH, Zheng Y-C, Dong B, Neville MC, et al. Bovine glucose transporter GLUT8: cloning, expression, and developmental regulation in mammary gland. Biochim Biophys Acta. 2004;1680(2):103–13.

    CAS  PubMed  Google Scholar 

  89. Ibberson M, Uldry M, Thorens B. GLUTX1, a novel mammalian glucose transporter expressed in the central nervous system and insulin-sensitive tissues. J Biol Chem. 2000;275(7):4607–12.

    CAS  PubMed  Google Scholar 

  90. Rogers S, Docherty SE, Slavin JL, Henderson MA, Best JD. Differential expression of GLUT12 in breast cancer and normal breast tissue. Cancer Lett. 2003;193(2):225–33.

    CAS  PubMed  Google Scholar 

  91. Rogers S, Chandler JD, Clarke AL, Petrou S, Best JD. Glucose transporter GLUT12-functional characterization in Xenopus laevis oocytes. Biochem Biophys Res Commun. 2003;308(3):422–6.

    CAS  PubMed  Google Scholar 

  92. Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature. 2010;468(7323):527–32. doi:10.1038/nature09606.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science. 2012;335(6065):207–11. doi:10.1126/science.1213351.

    CAS  PubMed  Google Scholar 

  94. Holbein M, Bechir M, Ludwig S, Sommerfeld J, Cottini SR, Keel M, et al. Differential influence of arterial blood glucose on cerebral metabolism following severe traumatic brain injury. Crit Care. 2009;13(1):R13. doi:10.1186/cc7711.

    PubMed Central  PubMed  Google Scholar 

  95. Chueh FY, Malabanan C, McGuinness OP. Impact of portal glucose delivery on glucose metabolism in conscious, unrestrained mice. Am J Physiol Endocrinol Metab. 2006;291(6):E1206–11. doi:10.1152/ajpendo.00608.2005.

    CAS  PubMed  Google Scholar 

  96. Brun del Re I, Wu H-M. Arterial blood sampling changes the steady state of glucose in rats during FDG-PET. J Nucl Med. 2010;51(Supplement 2):1745.

    Google Scholar 

  97. Faulkner A, Chaiyabutr N, Peaker M, Carrick DT, Kuhn NJ. Metabolic significance of milk glucose. J Dairy Res. 1981;48(1):51–6.

    CAS  PubMed  Google Scholar 

  98. Kuhn NJ, White A. Milk glucose as an index of the intracellular glucose concentration of rat mammary gland. Biochem J. 1975;152(1):153–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Wilde CJ, Kuhn NJ. Lactose synthesis and the utilisation of glucose by rat mammary acini. Int J Biochem. 1981;13(3):311–6.

    CAS  PubMed  Google Scholar 

  100. Threadgold LC, Coore HG, Kuhn NJ. Monosaccharide transport into secretory cells of lactating-rat mammary gland. Biochem Soc Trans. 1981;9(1):66.

    CAS  PubMed  Google Scholar 

  101. Zhao K, Liu HY, Wang HF, Zhou MM, Liu JX. Effect of glucose availability on glucose transport in bovine mammary epithelial cells. Animal. 2012;6(3):488–93. doi:10.1017/S1751731111001893.

    CAS  PubMed  Google Scholar 

  102. Xiao CT, Cant JP. Relationship between glucose transport and metabolism in isolated bovine mammary epithelial cells. J Dairy Sci. 2005;88(8):2794–805. doi:10.3168/jds.S0022-0302(05)72959-3.

    CAS  PubMed  Google Scholar 

  103. Lee AT, Cerami A. Elevated glucose 6-phosphate levels are associated with plasmid mutations in vivo. Proc Natl Acad Sci U S A. 1987;84(23):8311–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Kadner RJ, Murphy GP, Stephens CM. Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli. J Gen Microbiol. 1992;138(10):2007–14.

    CAS  PubMed  Google Scholar 

  105. Faulkner A, Blatchford DR, Pollock HT. The transport of hexoses across the apical membrane of the mammary gland of the goat. Biochem Soc Trans. 1985;13:689–90.

    CAS  Google Scholar 

  106. Faulkner A, Peaker M. Regulation of mammary glucose metabolism in lactation. In: Neville MC, Daniel CW, editors. The mammary gland: development, regulation, and function. New York: Plenum Press; 1987. p. 535–62.

    Google Scholar 

  107. Kuhn NJ, White A. The topography of lactose synthesis. Biochem J. 1975;148(1):77–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. White MD, Kuhn NJ, Ward S. Permeability of lactating-rat mammary gland Golgi membranes to monosaccharides. Biochem J. 1980;190(3):621–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Keller K, Strube M, Mueckler M. Functional expression of the human HepG2 and rat adipocyte glucose transporters in Xenopus oocytes. Comparison of kinetic parameters. J Biol Chem. 1989;264(32):18884–9.

    CAS  PubMed  Google Scholar 

  110. Bentley PA, Shao Y, Misra Y, Morielli AD, Zhao FQ. Characterization of bovine glucose transporter 1 kinetics and substrate specificities in Xenopus oocytes. J Dairy Sci. 2012;95(3):1188–97. doi:10.3168/jds.2011-4430.

    CAS  PubMed  Google Scholar 

  111. Puntheeranurak T, Wimmer B, Castaneda F, Gruber HJ, Hinterdorfer P, Kinne RK. Substrate specificity of sugar transport by rabbit SGLT1: single-molecule atomic force microscopy versus transport studies. Biochemistry. 2007;46(10):2797–804. doi:10.1021/bi061917z.

    CAS  PubMed  Google Scholar 

  112. White MD, Kuhn NJ, Ward S. Mannitol and glucose movement across the Golgi membrane of lactating-rat mammary gland. Biochem J. 1981;194(1):173–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. White MD, Ward S, Kuhn NJ. Pore properties of the Golgi membrane from lactating-rat mammary gland. Effects of pH and temperature and reconstitution into phospholipid vesicles. Biochem J. 1984;217(1):297–301.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Wallace AV, Kuhn NJ. Incorporation into phospholipid vesicles of pore-like properties from Golgi membranes of lactating-rat mammary gland. Biochem J. 1986;236(1):91–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Zhao FQ, Glimm DR, Kennelly JJ. Distribution of mammalian facilitative glucose transporter messenger RNA in bovine tissues. Int J Biochem. 1993;25(12):1897–903.

    CAS  PubMed  Google Scholar 

  116. Zhao FQ, Dixon WT, Kennelly JJ. Localization and gene expression of glucose transporters in bovine mammary gland. Comp Biochem Physiol. 1996;115(1):127–34.

    CAS  Google Scholar 

  117. Finucane KA, McFadden TB, Bond JP, Kennelly JJ, Zhao FQ. Onset of lactation in the bovine mammary gland: gene expression profiling indicates a strong inhibition of gene expression in cell proliferation. Funct Integr Genomics. 2008;8(3):251–64. doi:10.1007/s10142-008-0074-y.

    CAS  PubMed  Google Scholar 

  118. Miller PJ, Finucane KA, Hughes M, Zhao FQ. Cloning and expression of bovine glucose transporter GLUT12. Mamm Genome. 2005;16(11):873–83. doi:10.1007/s00335-005-0080-5.

    CAS  PubMed  Google Scholar 

  119. Burnol AF, Leturque A, Loizeau M, Postic C, Girard J. Glucose transporter expression in rat mammary gland. Biochem J. 1990;270(1):277–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Camps M, Vilaro S, Testar X, Palacin M, Zorzano A. High and polarized expression of GLUT1 glucose transporters in epithelial cells from mammary gland: acute down-regulation of GLUT1 carriers by weaning. Endocrinology. 1994;134(2):924–34.

    CAS  PubMed  Google Scholar 

  121. Madon RJ, Martin S, Davies A, Fawcett HA, Flint DJ, Baldwin SA. Identification and characterization of glucose transport proteins in plasma membrane- and Golgi vesicle-enriched fractions prepared from lactating rat mammary gland. Biochem J. 1990;272(1):99–105.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Macheda ML, Williams ED, Best JD, Wlodek ME, Rogers S. Expression and localisation of GLUT1 and GLUT12 glucose transporters in the pregnant and lactating rat mammary gland. Cell Tissue Res. 2003;311(1):91–7.

    CAS  PubMed  Google Scholar 

  123. Nemeth BA, Tsang SWY, Geske RS, Haney PM. Golgi targeting of the GLUT1 glucose transporter in lactating mouse mammary gland. Pediatr Res. 2000;47(4):444–50.

    CAS  PubMed  Google Scholar 

  124. Jang SM, Han H, Jang KS, Jun YJ, Jang SH, Min KW, et al. The glycolytic phenotype is correlated with aggressiveness and poor prognosis in invasive ductal carcinomas. J Breast Cancer. 2012;15(2):172–80. doi:10.4048/jbc.2012.15.2.172.

    PubMed Central  PubMed  Google Scholar 

  125. Alo PL, Visca P, Botti C, Galati GM, Sebastiani V, Andreano T, et al. Immunohistochemical expression of human erythrocyte glucose transporter and fatty acid synthase in infiltrating breast carcinomas and adjacent typical/atypical hyperplastic or normal breast tissue. Am J Clin Pathol. 2001;116(1):129–34. doi:10.1309/5Y2L-CDCK-YB55-KDK6.

    CAS  PubMed  Google Scholar 

  126. Brown RS, Wahl RL. Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer. 1993;72(10):2979–85.

    CAS  PubMed  Google Scholar 

  127. Laporta J, Peters TL, Merriman KE, Vezina CM, Hernandez LL. Serotonin (5-HT) affects expression of liver metabolic enzymes and mammary gland glucose transporters during the transition from pregnancy to lactation. PLoS ONE. 2013;8(2):e57847. doi:10.1371/journal.pone.0057847.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Shennan DB, Beechey RB. Mechanisms involved in the uptake of D-glucose into the milk-producing cells of rat mammary tissue. Biochem Biophys Res Commun. 1995;211(3):986.

    CAS  PubMed  Google Scholar 

  129. Zhao FQ, Zheng YC, Wall EH, McFadden TB. Cloning and expression of bovine sodium/glucose cotransporters. J Dairy Sci. 2005;88(1):182–94.

    CAS  PubMed  Google Scholar 

  130. Zhao FQ, Okine EK, Kennelly JJ. Glucose transporter gene expression in bovine mammary gland. J Anim Sci. 1999;77(9):2517–22.

    CAS  PubMed  Google Scholar 

  131. Obermeier S, Huselweh B, Tinel H, Kinne RH, Kunz C. Expression of glucose transporters in lactating human mammary gland epithelial cells. Eur J Nutr. 2000;39(5):194–200.

    CAS  PubMed  Google Scholar 

  132. Zhao FQ, McFadden TB, Wall EH, Dong B, Zheng YC. Cloning and expression of bovine sodium/glucose cotransporter SGLT2. J Dairy Sci. 2005;88(8):2738–48.

    CAS  PubMed  Google Scholar 

  133. Shennan DB, Peaker M. Transport of milk constituents by the mammary gland. Physiol Rev. 2000;80(3):925–51.

    CAS  PubMed  Google Scholar 

  134. Polakof S, Mommsen TP, Soengas JL. Glucosensing and glucose homeostasis: from fish to mammals. Comp Biochem Physiol B Biochem Mol Biol. 2011;160(4):123–49. doi:10.1016/j.cbpb.2011.07.006.

    CAS  PubMed  Google Scholar 

  135. Smeekens S, Ma J, Hanson J, Rolland F. Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol. 2010;13(3):274–9. doi:10.1016/j.pbi.2009.12.002.

    CAS  PubMed  Google Scholar 

  136. Bauman DE, Currie WB. Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis. J Dairy Sci. 1980;63(9):1514–29.

    CAS  PubMed  Google Scholar 

  137. Prosser CG, Topper YJ. Changes in the rate of carrier-mediated glucose transport by mouse mammary epithelial cells during ontogeny: hormone dependence delineated in vitro. Endocrinology. 1986;119(1):91–6.

    CAS  PubMed  Google Scholar 

  138. Threadgold LC, Kuhn NJ. Monosaccharide transport in the mammary gland of the intact lactating rat. Biochem J. 1984;218(1):213–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Zhao FQ, Keating AF. Expression and regulation of glucose transporters in the bovine mammary gland. J Dairy Sci. 2007;90 Suppl 1:E76–86. doi:10.3168/jds.2006-470.

    PubMed  Google Scholar 

  140. Mattmiller SA, Corl CM, Gandy JC, Loor JJ, Sordillo LM. Glucose transporter and hypoxia-associated gene expression in the mammary gland of transition dairy cattle. J Dairy Sci. 2011;94(6):2912–22. doi:10.3168/jds.2010-3936.

    CAS  PubMed  Google Scholar 

  141. Komatsu T, Itoh F, Kushibiki S, Hodate K. Changes in gene expression of glucose transporters in lactating and nonlactating cows. J Anim Sci. 2005;83(3):557–64.

    CAS  PubMed  Google Scholar 

  142. Watson CJ, Khaled WT. Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development. 2008;135(6):995–1003. doi:10.1242/dev.005439.

    CAS  PubMed  Google Scholar 

  143. Hovey RC, Trott JF. Morphogenesis of mammary gland development. Adv Exp Med Biol. 2004;554:219–28.

    CAS  PubMed  Google Scholar 

  144. Page T, Kuhn NJ. Arteriovenous glucose differences across the mammary gland of the fed, starved, and re-fed lactating rat. Biochem J. 1986;239(2):269–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Peters BJ, Rillema JA. Effect of prolactin on 2-deoxyglucose uptake in mouse mammary gland explants. Am J Physiol. 1992;262(5 Pt 1):E627–30.

    CAS  PubMed  Google Scholar 

  146. Naylor MJ, Oakes SR, Gardiner-Garden M, Harris J, Blazek K, Ho TW, et al. Transcriptional changes underlying the secretory activation phase of mammary gland development. Mol Endocrinol. 2005;19(7):1868–83. doi:10.1210/me.2004-0254.

    CAS  PubMed  Google Scholar 

  147. Fawcett HA, Baldwin SA, Flint DJ. Hormonal regulation of the glucose transporter GLUT I in the lactating rat mammary gland. Biochem Soc Trans. 1992;20(1):17S.

    CAS  PubMed  Google Scholar 

  148. Rudolph MC, Russell TD, Webb P, Neville MC, Anderson SM. Prolactin-mediated regulation of lipid biosynthesis genes in vivo in the lactating mammary epithelial cell. Am J Physiol Endocrinol Metab. 2011;300(6):E1059–68. doi:10.1152/ajpendo.00083.2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Haney PM. Localization of the GLUT1 glucose transporter to brefeldin A-sensitive vesicles of differentiated CIT3 mouse mammary epithelial cells. Cell Biol Int. 2001;25(4):277–88. doi:10.1006/cbir.2000.0649.

    CAS  PubMed  Google Scholar 

  150. Shao Y, Wall EH, McFadden TB, Misra Y, Qian X, Blauwiekel R, et al. Lactogenic hormones stimulate expression of lipogenic genes but not glucose transporters in bovine mammary gland. Domest Anim Endocrinol. 2013;44(2):57–69. doi:10.1016/j.domaniend.2012.09.001.

    CAS  PubMed  Google Scholar 

  151. Zhao FQ, Moseley WM, Tucker HA, Kennelly JJ. Regulation of glucose transporter gene expression in mammary gland, muscle, and fat of lactating cows by administration of bovine growth hormone and bovine growth hormone-releasing factor. J Anim Sci. 1996;74(1):183–9.

    CAS  PubMed  Google Scholar 

  152. Tanwattana P, Chanpongsang S, Chaiyabutr N. Effects of exogenous bovine somatotropin on mammary function of late lactating crossbred holstein cows. Asian-Aust J Anim Sci. 2003;16(1):88–95.

    CAS  Google Scholar 

  153. Shao Y, Zhao F-Q. Emerging evidence of physiological role of hypoxia in mammary development and lactation. J Anim Sci Biotechnol. 2013, in press.

  154. Zhang JZ, Behrooz A, Ismail-Beigi F. Regulation of glucose transport by hypoxia. Am J Kidney Dis. 1999;34(1):189–202. doi:10.1053/AJKD03400189.

    CAS  PubMed  Google Scholar 

  155. Baumann MU, Zamudio S, Illsley NP. Hypoxic upregulation of glucose transporters in BeWo choriocarcinoma cells is mediated by hypoxia-inducible factor-1. Am J Physiol Cell Physiol. 2007;293(1):C477–85. doi:10.1152/ajpcell.00075.2007.

    CAS  PubMed  Google Scholar 

  156. Ren BF, Deng LF, Wang J, Zhu YP, Wei L, Zhou Q. Hypoxia regulation of facilitated glucose transporter-1 and glucose transporter-3 in mouse chondrocytes mediated by HIF-1alpha. Joint Bone Spine. 2008;75(2):176–81. doi:10.1016/j.jbspin.2007.05.012.

    CAS  PubMed  Google Scholar 

  157. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001;107(1):43–54.

    CAS  PubMed  Google Scholar 

  158. Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, et al. Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem. 2000;275(33):25733–41. doi:10.1074/jbc.M002740200.

    CAS  PubMed  Google Scholar 

  159. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–5. doi:10.1038/20459.

    CAS  PubMed  Google Scholar 

  160. Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004;5(5):343–54. doi:10.1038/nrm1366.

    CAS  PubMed  Google Scholar 

  161. Seagroves TN, Hadsell D, McManaman J, Palmer C, Liao D, McNulty W, et al. HIF1alpha is a critical regulator of secretory differentiation and activation, but not vascular expansion, in the mouse mammary gland. Development. 2003;130(8):1713–24.

    CAS  PubMed  Google Scholar 

  162. Aragones J, Fraisl P, Baes M, Carmeliet P. Oxygen sensors at the crossroad of metabolism. Cell Metab. 2009;9(1):11–22. doi:10.1016/j.cmet.2008.10.001.

    CAS  PubMed  Google Scholar 

  163. Riskin A, Nannegari VH, Mond Y. Acute effectors of GLUT1 glucose transporter subcellular targeting in CIT3 mouse mammary epithelial cells. Pediatr Res. 2008;63(1):56–61. doi:10.1203/PDR.0b013e31815b440b.

    CAS  PubMed  Google Scholar 

  164. Samih N, Hovsepian S, Notel F, Prorok M, Zattara-Cannoni H, Mathieu S, et al. The impact of N- and O-glycosylation on the functions of Glut-1 transporter in human thyroid anaplastic cells. Biochim Biophys Acta. 2003;1621(1):92–101.

    CAS  PubMed  Google Scholar 

  165. Ahmed N, Berridge MV. N-glycosylation of glucose transporter-1 (Glut-1) is associated with increased transporter affinity for glucose in human leukemic cells. Leuk Res. 1999;23(4):395–401.

    CAS  PubMed  Google Scholar 

  166. Samih N, Hovsepian S, Aouani A, Lombardo D, Fayet G. Glut-1 translocation in FRTL-5 thyroid cells: role of phosphatidylinositol 3-kinase and N-glycosylation. Endocrinology. 2000;141(11):4146–55.

    CAS  PubMed  Google Scholar 

  167. Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends Biochem Sci. 1999;24(2):68–72.

    CAS  PubMed  Google Scholar 

  168. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.

    CAS  PubMed  Google Scholar 

  169. Gillies RJ, Robey I, Gatenby RA. Causes and consequences of increased glucose metabolism of cancers. J Nucl Med. 2008;49 Suppl 2:24S–42. doi:10.2967/jnumed.107.047258.

    CAS  PubMed  Google Scholar 

  170. Gatenby RA. Potential role of FDG-PET imaging in understanding tumor-host interaction. J Nucl Med. 1995;36(5):893–9.

    CAS  PubMed  Google Scholar 

  171. Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med. 2001;42(5 Suppl):1S–93.

    CAS  PubMed  Google Scholar 

  172. Yap CS, Seltzer MA, Schiepers C, Gambhir SS, Rao J, Phelps ME, et al. Impact of whole-body 18F-FDG PET on staging and managing patients with breast cancer: the referring physician’s perspective. J Nucl Med. 2001;42(9):1334–7.

    CAS  PubMed  Google Scholar 

  173. Airley RE, Mobasheri A. Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy. 2007;53(4):233–56. doi:10.1159/000104457.

    CAS  PubMed  Google Scholar 

  174. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95. doi:10.1038/nrc2981.

    CAS  PubMed  Google Scholar 

  175. Cassavaugh J, Lounsbury KM. Hypoxia-mediated biological control. J Cell Biochem. 2011;112(3):735–44. doi:10.1002/jcb.22956.

    CAS  PubMed  Google Scholar 

  176. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399–408. doi:10.1016/j.cell.2012.01.021.

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Kang SS, Chun YK, Hur MH, Lee HK, Kim YJ, Hong SR, et al. Clinical significance of glucose transporter 1 (GLUT1) expression in human breast carcinoma. Jpn J Cancer Res. 2002;93(10):1123–8.

    CAS  PubMed  Google Scholar 

  178. Younes M, Brown RW, Mody DR, Fernandez L, Laucirica R. GLUT1 expression in human breast carcinoma: correlation with known prognostic markers. Anticancer Res. 1995;15(6B):2895–8.

    CAS  PubMed  Google Scholar 

  179. Choi J, Jung WH, Koo JS. Metabolism-related proteins are differentially expressed according to the molecular subtype of invasive breast cancer defined by surrogate immunohistochemistry. Pathobiology. 2013;80(1):41–52. doi:10.1159/000339513.

    CAS  PubMed  Google Scholar 

  180. Young CD, Lewis AS, Rudolph MC, Ruehle MD, Jackman MR, Yun UJ, et al. Modulation of glucose transporter 1 (GLUT1) expression levels alters mouse mammary tumor cell growth in vitro and in vivo. PLoS ONE. 2011;6(8):e23205. doi:10.1371/journal.pone.0023205.

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Krzeslak A, Wojcik-Krowiranda K, Forma E, Jozwiak P, Romanowicz H, Bienkiewicz A, et al. Expression of GLUT1 and GLUT3 glucose transporters in endometrial and breast cancers. Pathol Oncol Res. 2012;18(3):721–8. doi:10.1007/s12253-012-9500-5.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

I am indebted to the students, fellows, and collaborators for their contributions to the cited works of my laboratory at the University of Vermont. The work of my laboratory has been supported by various grants from the USDA, including the National Research Initiative Competitive Grants no. 2005-35206-15267 and no. 2007-35206-18037 from the USDA National Institute of Food and Agriculture.

Disclosures

No conflicts of interest, financial or otherwise, are declared by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Qi Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, FQ. Biology of Glucose Transport in the Mammary Gland. J Mammary Gland Biol Neoplasia 19, 3–17 (2014). https://doi.org/10.1007/s10911-013-9310-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-013-9310-8

Keywords

Navigation