Skip to main content
Log in

Serotonin and Serotonin Transport in the Regulation of Lactation

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Serotonin (5-HT), classically known as a neurotransmitter involved in regulating sleep, appetite, memory, sexual behavior, neuroendocrine function and mood is also synthesized in epithelial cells located in many organs throughout the body, including the mammary gland. The function of epithelial 5-HT is dependent on the expression of the 5-HT receptors in a particular system. The conventional components of a classic 5-HT system are found within the mammary gland; synthetic enzymes (tryptophan hydroxylase I, aromatic amino acid decarboxylase), several 5-HT receptors and the 5-HT reuptake transporter (SERT). In the mammary gland, two actions of 5-HT through two different 5-HT receptor subtypes have been described: negative feedback on milk synthesis and secretion, and stimulation of parathyroid hormone related-protein, a calcium-mobilizing hormone. As with neuronal systems, the regulation of 5-HT activity is multifactorial, but one seminal component is reuptake of 5-HT from the extracellular space following its release. Importantly, the wide availability of selective 5-HT reuptake inhibitors (SSRI) allows the manipulation of 5-HT activity in a biological system. Here, we review the role of 5-HT in mammary gland function, review the biochemistry, genetics and physiology of SERT, and discuss how SERT is vital to the function of the mammary gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

5-HT:

serotonin

SERT:

serotonin transporter

SSRI:

selective serotonin reuptake inhibitor

5-HTP:

5-hydroxy-L-tryptophan

TPH:

tryptophan hydroxylase

AADC:

aromatic amine decarboxylase

MAO:

monoamine oxidase

5-HIAA:

5-hydroxyindole acetic acid

RANKL:

receptor activator of NF-κB ligand

PTHrP:

parathyroid hormone related protein

VMAT:

vesicular monoamine transporters

References

  1. Walther DJ, Peter JU, Bashammakh S, Hortnagl H, Voits M, Fink H, et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science. 2003;299:76.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang X, Beaulieu JM, Sotnikova TD, Gainetdinov RR, Caron MG. Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science. 2004;305:217.

    Article  CAS  PubMed  Google Scholar 

  3. Matsuda M, Imaoka T, Vomachka AJ, Gudelsky GA, Hou Z, Mistry M, et al. Serotonin regulates mammary gland development via an autocrine-paracrine loop. Dev Cell. 2004;6:193–203.

    Article  CAS  PubMed  Google Scholar 

  4. Hernandez LL, Stiening CM, Wheelock JB, Baumgard LH, Parkhurst AM, Collier RJ. Evaluation of serotonin as a feedback inhibitor of lactation in the bovine. J Dairy Sci. 2008;91:1834–44.

    Article  CAS  PubMed  Google Scholar 

  5. Boadle-Biber MC. Regulation of serotonin synthesis. Prog Biophys Mol Biol. 1993;60:1–15.

    Article  CAS  PubMed  Google Scholar 

  6. Yamaguchi Y, Hayashi C. Simple determination of high urinary excretion of 5-hydroxyindole-3-acetic acid with ferric chloride. Clin Chem. 1978;24:149–50.

    CAS  PubMed  Google Scholar 

  7. Rahman MK, Nagatsu T, Sakurai T, Hori S, Abe M, Matsuda M. Effect of pyridoxal phosphate deficiency on aromatic L-amino acid decarboxylase activity with L-DOPA and L-5-hydroxytryptophan as substrates in rats. Jpn J Pharmacol. 1982;32:803–11.

    Article  CAS  PubMed  Google Scholar 

  8. Oldendorf WH. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Physiol. 1971;221:1629–39.

    CAS  PubMed  Google Scholar 

  9. Sanger GJ. 5-Hydroxytryptamine and the gastrointestinal tract: where next? Trends Pharmacol Sci. 2008;29:465–71.

    Article  CAS  PubMed  Google Scholar 

  10. MacLean MR. Pulmonary hypertension, anorexigens and 5-HT: pharmacological synergism in action? Trends Pharmacol Sci. 1999;20:490–5.

    Article  CAS  PubMed  Google Scholar 

  11. Ramage AG, Villalon CM. 5-hydroxytryptamine and cardiovascular regulation. Trends Pharmacol Sci. 2008;29:472–81.

    Article  CAS  PubMed  Google Scholar 

  12. Roth BL. The serotonin receptors: from molecular pharmacology to human therapeutics. Totowa: Humana Press; 2006.

    Book  Google Scholar 

  13. Hannon J, Hoyer D. Molecular biology of 5-HT receptors. Behav Brain Res. 2008;195:198–213.

    Article  CAS  PubMed  Google Scholar 

  14. Stull MA, Pai V, Vomachka AJ, Marshall AM, Jacob GA, Horseman ND. Mammary gland homeostasis employs serotonergic regulation of epithelial tight junctions. Proc Natl Acad Sci U S A. 2007;104:16708–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Marshall AM, Nommsen-Rivers LA, Hernandez LL, Dewey KG, Chantry CJ, Gregerson KA, et al. Serotonin transport and metabolism in the mammary gland modulates secretory activation and involution. J Clin Endocrinol Metab. 2010;95:837–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Nguyen DA, Neville MC. Tight junction regulation in the mammary gland. J Mammary Gland Biol Neoplasia. 1998;3:233–46.

    Article  CAS  PubMed  Google Scholar 

  17. Pai VP, Horseman ND. Biphasic regulation of mammary epithelial resistance by serotonin through activation of multiple pathways. J Biol Chem. 2008;283:30901–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Pai VP, Horseman ND. Multiple cellular responses to serotonin contribute to epithelial homeostasis. PLoS One. 2011;6:e17028.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Pai VP, Marshall AM. Intraluminal volume homeostasis: a common sertonergic mechanism among diverse epithelia. Commun Integr Biol. 2011;4:532–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Hernandez LL, Gregerson KA, Horseman ND. Mammary gland serotonin regulates parathyroid hormone-related protein and other bone-related signals. Am J Physiol Endocrinol Metab. 2012;302:E1009–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Laporta J, Moore SA, Peters MW, Peters TL, Hernandez LL. Short communication: circulating serotonin (5-HT) concentrations on day 1 of lactation as a potential predictor of transition-related disorders. J Dairy Sci. 2013;96:5146–50.

    Article  CAS  PubMed  Google Scholar 

  22. Wysolmerski JJ. Parathyroid hormone-related protein: an update. J Clin Endocrinol Metab. 2012;97:2947–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Datta NS, Samra TA, Abou-Samra AB. Parathyroid hormone induces bone formation in phosphorylation-deficient PTHR1 knockin mice. Am J Physiol Endocrinol Metab. 2012;302:E1183–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Laporta J, Peters TL, Weaver SR, Merriman KE, Hernandez LL. Feeding 5-hydroxy-l-tryptophan during the transition from pregnancy to lactation increases calcium mobilization from bone in rats. Domest Anim Endocrinol. 2013;44:176–84.

    Article  CAS  PubMed  Google Scholar 

  25. Horst RL, Goff JP, Reinhardt TA. Adapting to the transition between gestation and lactation: differences between rat, human and dairy cow. J Mammary Gland Biol Neoplasia. 2005;10:141–56.

    Article  PubMed  Google Scholar 

  26. Daubner SC, Lauriano C, Haycock JW, Fitzpatrick PF. Site-directed mutagenesis of serine 40 of rat tyrosine hydroxylase. Effects of dopamine and cAMP-dependent phosphorylation on enzyme activity. J Biol Chem. 1992;267:12639–46.

    CAS  PubMed  Google Scholar 

  27. Mockus SM, Kumer SC, Vrana KE. A chimeric tyrosine/tryptophan hydroxylase. The tyrosine hydroxylase regulatory domain serves to stabilize enzyme activity. J Mol Neurosci. 1997;9:35–48.

    Article  CAS  PubMed  Google Scholar 

  28. Winge I, McKinney JA, Ying M, D’Santos CS, Kleppe R, Knappskog PM, et al. Activation and stabilization of human tryptophan hydroxylase 2 by phosphorylation and 14-3-3 binding. Biochem J. 2008;410:195–204.

    Article  CAS  PubMed  Google Scholar 

  29. McKinney J, Knappskog PM, Pereira J, Ekern T, Toska K, Kuitert BB, et al. Expression and purification of human tryptophan hydroxylase from Escherichia coli and Pichia pastoris. Protein Expr Purif. 2004;33:185–94.

    Article  CAS  PubMed  Google Scholar 

  30. McKinney J, Knappskog PM, Haavik J. Different properties of the central and peripheral forms of human tryptophan hydroxylase. J Neurochem. 2005;92:311–20.

    Article  CAS  PubMed  Google Scholar 

  31. Johnston JP. Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol. 1968;17:1285–97.

    Article  CAS  PubMed  Google Scholar 

  32. Knoll J, Magyar K. Some puzzling pharmacological effects of monoamine oxidase inhibitors. Adv Biochem Psychopharmacol. 1972;5:393–408.

    CAS  PubMed  Google Scholar 

  33. Fornai F, Chen K, Giorgi FS, Gesi M, Alessandri MG, Shih JC. Striatal dopamine metabolism in monoamine oxidase B-deficient mice: a brain dialysis study. J Neurochem. 1999;73:2434–40.

    Article  CAS  PubMed  Google Scholar 

  34. Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S, et al. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science. 1995;268:1763–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Grimsby J, Toth M, Chen K, Kumazawa T, Klaidman L, Adams JD, et al. Increased stress response and beta-phenylethylamine in MAOB-deficient mice. Nat Genet. 1997;17:206–10.

    Article  CAS  PubMed  Google Scholar 

  36. Rudnick G, Nelson PJ. Reconstitution of 5-hydroxytryptamine transport from cholate-disrupted platelet plasma membrane vesicles. Biochemistry. 1978;17:5300–3.

    Article  CAS  PubMed  Google Scholar 

  37. Gu H, Caplan MJ, Rudnick G. Cloned catecholamine transporters expressed in polarized epithelial cells: sorting, drug sensitivity, and ion-coupling stoichiometry. Adv Pharmacol. 1998;42:175–9.

    Article  CAS  PubMed  Google Scholar 

  38. Talvenheimo J, Fishkes H, Nelson PJ, Rudnick G. The serotonin transporter-imipramine “receptor”. J Biol Chem. 1983;258:6115–9.

    CAS  PubMed  Google Scholar 

  39. Androutsellis-Theotokis A, Goldberg NR, Ueda K, Beppu T, Beckman ML, Das S, et al. Characterization of a functional bacterial homologue of sodium-dependent neurotransmitter transporters. J Biol Chem. 2003;278:12703–9.

    Article  CAS  PubMed  Google Scholar 

  40. Rudnick G. Serotonin transporters–structure and function. J Membr Biol. 2006;213:101–10.

    Article  CAS  PubMed  Google Scholar 

  41. Larsen MB, Fjorback AW, Wiborg O. The C-terminus is critical for the functional expression of the human serotonin transporter. Biochemistry. 2006;45:1331–7.

    Article  CAS  PubMed  Google Scholar 

  42. Ahmed BA, Jeffus BC, Bukhari SI, Harney JT, Unal R, Lupashin VV, et al. Serotonin transamidates Rab4 and facilitates its binding to the C terminus of serotonin transporter. J Biol Chem. 2008;283:9388–98.

    Article  CAS  PubMed  Google Scholar 

  43. Qian Y, Galli A, Ramamoorthy S, Risso S, DeFelice LJ, Blakely RD. Protein kinase C activation regulates human serotonin transporters in HEK-293 cells via altered cell surface expression. J Neurosci. 1997;17:45–57.

    CAS  PubMed  Google Scholar 

  44. Zhu CB, Hewlett WA, Feoktistov I, Biaggioni I, Blakely RD. Adenosine receptor, protein kinase G, and p38 mitogen-activated protein kinase-dependent up-regulation of serotonin transporters involves both transporter trafficking and activation. Mol Pharmacol. 2004;65:1462–74.

    Article  CAS  PubMed  Google Scholar 

  45. Beckman ML, Bernstein EM, Quick MW. Protein kinase C regulates the interaction between a GABA transporter and syntaxin 1A. J Neurosci. 1998;18:6103–12.

    CAS  PubMed  Google Scholar 

  46. Wong A, Zhang YW, Jeschke GR, Turk BE, Rudnick G. Cyclic GMP-dependent stimulation of serotonin transport does not involve direct transporter phosphorylation by cGMP-dependent protein kinase. J Biol Chem. 2012;287:36051–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Erickson JD, Eiden LE, Hoffman BJ. Expression cloning of a reserpine-sensitive vesicular monoamine transporter. Proc Natl Acad Sci U S A. 1992;89:10993–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Erickson JD, Eiden LE. Functional identification and molecular cloning of a human brain vesicle monoamine transporter. J Neurochem. 1993;61:2314–7.

    Article  CAS  PubMed  Google Scholar 

  49. Erickson JD, Schafer MK, Bonner TI, Eiden LE, Weihe E. Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc Natl Acad Sci U S A. 1996;93:5166–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Merickel A, Edwards RH. Transport of histamine by vesicular monoamine transporter-2. Neuropharmacology. 1995;34:1543–7.

    Article  CAS  PubMed  Google Scholar 

  51. Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology. 2007;132:397–414.

    Article  CAS  PubMed  Google Scholar 

  52. Fabre V, Boutrel B, Hanoun N, Lanfumey L, Fattaccini CM, Demeneix B, et al. Homeostatic regulation of serotonergic function by the serotonin transporter as revealed by nonviral gene transfer. J Neurosci. 2000;20:5065–75.

    CAS  PubMed  Google Scholar 

  53. Marshall AM, Pai VP, Sartor MA, Horseman ND. In vitro multipotent differentiation and barrier function of a human mammary epithelium. Cell Tissue Res. 2009;335:383–95.

    Article  PubMed  Google Scholar 

  54. Nguyen DA, Parlow AF, Neville MC. Hormonal regulation of tight junction closure in the mouse mammary epithelium during the transition from pregnancy to lactation. J Endocrinol. 2001;170:347–56.

    Article  CAS  PubMed  Google Scholar 

  55. Gorman JR, Kao K, Chambers CD. Breastfeeding among women exposed to antidepressants during pregnancy. J Hum Lact. 2012;28:181–8.

    Article  PubMed  Google Scholar 

  56. Sghendo L, Mifsud J. Understanding the molecular pharmacology of the serotonergic system: using fluoxetine as a model. J Pharm Pharmacol. 2012;64:317–25.

    Article  CAS  PubMed  Google Scholar 

  57. Brambilla P, Cipriani A, Hotopf M, Barbui C. Side-effect profile of fluoxetine in comparison with other SSRIs, tricyclic and newer antidepressants: a meta-analysis of clinical trial data. Pharmacopsychiatry. 2005;38:69–77.

    Article  CAS  PubMed  Google Scholar 

  58. Fabre V, Beaufour C, Evrard A, Rioux A, Hanoun N, Lesch KP, et al. Altered expression and functions of serotonin 5-HT1A and 5-HT1B receptors in knock-out mice lacking the 5-HT transporter. Eur J Neurosci. 2000;12:2299–310.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson D. Horseman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, A.M., Hernandez, L.L. & Horseman, N.D. Serotonin and Serotonin Transport in the Regulation of Lactation. J Mammary Gland Biol Neoplasia 19, 139–146 (2014). https://doi.org/10.1007/s10911-013-9304-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-013-9304-6

Keywords

Navigation