Skip to main content

Advertisement

Log in

Paradigm-Shifters: Phosphorylated Prolactin and Short Prolactin Receptors

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Since the discovery of physiologically-regulated prolactin (PRL) phosphorylation, one focus of the laboratory has been an examination of the different functions of the unmodified and phosphorylated hormone. In the mammary gland, unmodified PRL promotes growth activities, whereas phosphorylated or pseudophosphorylated PRL antagonizes this while also being a superior agonist for changes that favor differentiation. Phosphorylated PRL also increases expression of the short forms of the PRL receptor. These short forms of the receptor have functions beyond the accepted dominant negative and in mammary epithelial cells are capable of generating an intracellular signal leading to increased tight junction formation and β-casein expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

PRL:

prolactin

S179D PRL:

prolactin in which the normally phosphorylated serine at position 179 is replaced with an aspartate

U-PRL:

recombinant unmodified PRL

PRLR:

prolactin receptor

ERK:

extracellular regulated kinase

Stat 5:

signal transducer and activation of transcription 5

γPAK:

gamma p21-activated kinase

VDR:

vitamin D receptor

References

  1. Lorenson MY, Walker AM. Structure-function relationships in prolactin. Prolactin. Massachusetts: Kluwer Academic Publishers; 2001. p. 189–217.

    Google Scholar 

  2. Oetting WS, Tuazon PT, Traugh JA, Walker AM. Phosphorylation of prolactin. J Biol Chem 1986;261:1649–52.

    PubMed  CAS  Google Scholar 

  3. Brooks CL, Kim BG, Aphale P, Kleeman BE, Johnson GC. Phosphorylated variant of bovine prolactin. Mol Cell Endocrino. 1990;71:117–23.

    Article  CAS  Google Scholar 

  4. Aramburo C, Montiel JL, Proudman JA, Berghman LR, Scanes CG. Phosphorylation of PRL and growth hormone. J Mol Endocrinol 1992;8:183–91.

    Article  PubMed  CAS  Google Scholar 

  5. Tuazon PT, Lorenson MY, Walker AM, Traugh JA. p21-activated protein kinase gamma-PAK in pituitary secretory granules phosphorylates prolactin. FEBS Lett 2002;515:84–8.

    Article  PubMed  CAS  Google Scholar 

  6. Wu W, Coss D, Lorenson MY, Kuo CB, Xu X, Walker AM. Different Biological Effects of unmodified prolactin and a molecular mimic of phosphorylated prolactin involve different signaling pathways. Biochemistry 2003;42:7561–70.

    Article  PubMed  CAS  Google Scholar 

  7. Horiguchi K, Fukuta S, Yoshida M, Kosugi T, Naito JI, Ishida M, Haragya T. Estrogen regulates the serum level of phosphorylated prolactin in mice. J Reprod Dev 2007;53:915–22.

    Article  PubMed  CAS  Google Scholar 

  8. Wang Y-F, Liu J-W, Mamidi M, Walker AM. Identification of the major site of rat prolactin phosphorylation as serine 177. J Biol Chem 1996;271:2462–9.

    Article  PubMed  CAS  Google Scholar 

  9. Duncan JS, Wilkinson MC, Burgoyne RD. Purification of Golgi casein kinase from bovine milk. Biochem J 2000;350:463–8.

    Article  PubMed  CAS  Google Scholar 

  10. Wang Y, Telfer WH. Cyclic nucleotide-dependent protein phosphorylation in vitellogenic follicles of Hyalophora cecropia. Insect Biochem Mol Biol 2000;30:29–34.

    Article  PubMed  Google Scholar 

  11. May LT, Sehgal PB. Phosphorylation of interleukin-6 at serine 54: an early event in the secretory pathway in human fibroblasts. Biochem Biphys Res Commun 1992;185:524–30.

    Article  CAS  Google Scholar 

  12. Goumon Y, Strub JM, Moniatte M, Nullans G, Poteur L, Hubert P, Van Dorsselaer A, Aunis D, Metz-Boutigue MH. The C-terminal biphosphorylated proenkephalin-A-(209–237)-peptide from adrenal medullary chromaffin granules possesses antibacterial activity. Eur J Biochem 1996;235:516–25.

    Article  PubMed  CAS  Google Scholar 

  13. Strub JM, Goumon Y, Lugardon K, Capon C, Lopez M, Moniatte M, Dorsselaer AV, Aunis D, Metz-Boutigue MH. Antibacterial activity of glycosylated and phosphorylated chromogranin A-derived peptide 173–194 from bovine adrenal medullary chromaffin granules. J Biol Chem 1996;271:28533–40.

    Article  PubMed  CAS  Google Scholar 

  14. Sooryanarayana SS, Adiga PR, Visweswariah SS. Identification and characterization of receptors for riboflavin carrier protein in the chick oocyte. Role of the phosphopeptide in mediating receptor interaction. Biochim Biophys Acta 1998;1382:230–42.

    PubMed  CAS  Google Scholar 

  15. Nisbet AD, Saundry RH, Moir AJ, Fothergill LA, Fothergill JE. The complete amino acid sequence of hen ovalbumin. Eur J Biochem 1981;115:335–45.

    Article  PubMed  CAS  Google Scholar 

  16. Crzymala L, Castle A, Cheung JC, Bennick A. Cellular phosphorylation of an acidic praline-rich protein, PRP1, a secreted salivary phosphoproteins. Biochemistry 2000;39:2023–31.

    Article  CAS  Google Scholar 

  17. Pampena DA, Robertson KA, Litvinova O, Lajoie G, Goldberg HA, Hunter GK. Inhibition of hydroxyapatite formation by osteopontin phosphopeptides. Biochem J 2003;378:1083–7.

    Article  Google Scholar 

  18. McMahon HE, Sharma S, Shimasaki S. Phosphorylation of BMP-15 and GDF-9 plays a critical role in determining agonistic or antagonistic functions. Endocrinology 2008; doi 10.1210/en.2007-1439.

  19. Wang Y-F, Walker AM. Dephosphorylation of standard prolactin produces a more biologically active molecule: evidence for antagonism between non-phosphorylated and phosphorylated prolactin in the stimulation of Nb2 cell proliferation. Endocrinology 1993;133:2156–60.

    Article  PubMed  CAS  Google Scholar 

  20. Kline JB, Roehrs H, Clevenger CV. Functional characterization of the intermediate isoform of the human prolactin receptor. J Biol Chem 1999;274:35461–8.

    Article  PubMed  CAS  Google Scholar 

  21. Hu ZZ, Meng J, Dufau ML. Isolation and characterization of two novel forms of the human prolactin receptor generated by alternative splicing of a newly identified exon 11. Proc Natl Acad Sci USA 2001;276:41086–94.

    CAS  Google Scholar 

  22. Trott JF, Hovey RC, Koduri S, Vonderhaar BK. Alternative splicing to exon 11 of human prolactin receptor gene results in multiple isoforms including a secreted prolactin-binding protein. J Mol Endocrinol 2003;30:31–47.

    Article  PubMed  CAS  Google Scholar 

  23. Tzeng SJ, Linzer DI. Prolactin receptor expression in the developing mouse embryo. Mol Reprod Dev 1997;48:45–52.

    Article  PubMed  CAS  Google Scholar 

  24. Jabbour HN, Kelly PA. Prolactin receptor subtypes: a possible mode of tissue specific regulation of prolactin function. Rev Reprod 1997;2:14–8.

    Article  PubMed  CAS  Google Scholar 

  25. Berlanga JJ, Garcia-Ruiz JP, Perrot-Applanat M, Kelly PA, Edery M. The short form of the prolactin (PRL) receptor silences PRL induction of the β-casein gene promoter. Mol Endocrinol 1997;11:1449–57.

    Article  PubMed  CAS  Google Scholar 

  26. Hummel BC, Brown GM, Hwang P, Friesen HG. Human and monkey PRL and growth hormone: separation of polymorphic forms by isoelectric focusing. Endocrinology 1974;97:855–67.

    Google Scholar 

  27. Nyberg F, Roos P, Wide L. Human pituitary prolactin: isolation and characterization of three isohormones with different bioassay and radioimmunoassay activities. Biochim Biphys Acta 1980;625:255–65.

    CAS  Google Scholar 

  28. Nyberg F, Roos P, Wide L. Isolation of rat prolactin isohormones differing in charge, size, and specific immunological activity. Prep Biochem 1982;12:153–73.

    Article  PubMed  CAS  Google Scholar 

  29. Asawaroengchai H, Nicoll CS. Relationship among bioassay, radioimmunoassay and disc electrophoretic assay methods of measuring rat PRL in pituitary tissue and incubation. J Endocrinol 1977;73:301–8.

    PubMed  CAS  Google Scholar 

  30. Asawaroengchai H, Russel SM, Nicoll CS. Electrophoretically separable forms of rat PRL with different bioassay and radioimmunoassay activities. Endocrinology 1978;102:407–14.

    PubMed  CAS  Google Scholar 

  31. Sinha YN, Baxter SR. Identification of a non-immunoreactive but highly bioactive form of PRL in the mouse pituitary by gel electrophoresis. Biochem Biophys Res Commun 1979;86:325–30.

    Article  PubMed  CAS  Google Scholar 

  32. Lebovic DI, Nicoll CS. Measurement of inducible proteins improves the precision of the local pigeon crop-sac bioassay for prolactin. Life Sci 1992;50:2019–24.

    Article  PubMed  CAS  Google Scholar 

  33. Hwang P, Guyda H, Friesen H. Purification of human prolactin. J Biol Chem 1972;247:1955–8.

    PubMed  CAS  Google Scholar 

  34. Hwang P, Robertson M, Guyda H, Friesen H. Purification of human PRL from frozen pituitary glands. J Clin Endocrinol Metab 1973;36:1110–8.

    PubMed  CAS  Google Scholar 

  35. Hwang P, Murray JB, Jacobs JW, Niall HD, Friesen H. Human amniotic fluid prolactin: purification by affinity chromatography and amino-terminal sequence. Biochemistry 1974;13:2354–8.

    Article  PubMed  CAS  Google Scholar 

  36. Lewis UJ, Cheever EV, Hopkins WC. Kinetic study of the deamidation of growth hormone and prolactin. Biochim Biophys Acta 1970;214:498–508.

    PubMed  CAS  Google Scholar 

  37. Robinson AB, McKerrow JH, Cary P. Controlled deamidation of peptides and proteins: an experimental hazard and a possible biological timer. Proc Natl Acad Sci USA 1970;66:753–7.

    Article  PubMed  CAS  Google Scholar 

  38. Haro LS, Talamantes FJ. Secreted mouse PRL and stored ovine prolactin. I. Biochemical characterization, isolation, and purification of their electrophoretic isoforms. Endocrinology 1985;116:346–52.

    PubMed  CAS  Google Scholar 

  39. Haro LS, Talamantes FJ. Secreted mouse PRL and stored ovine PRL II: role of amides in receptor binding and immunoreactivity. Endocrinology 1985;116:353–8.

    PubMed  CAS  Google Scholar 

  40. Greenan JR, Balden E, Ho TWC, Walker AM. Biosynthesis of the secreted 24 kd isoforms of prolactin. Endocrinology 1989;125:2041–8.

    PubMed  CAS  Google Scholar 

  41. Kim BG, Brooks CL. Isolation and characterization of phosphorylated bovine prolactin. Biochem J 1993;296:41–7.

    PubMed  CAS  Google Scholar 

  42. Ho TWC, Leong F-S, Olaso CH, Walker AM. Secretion of specific non-phosphorylated and phosphorylated rat prolactin isoforms at different stages of the estrous cycle. Neuroendocrinology 1993;58:160–5.

    PubMed  CAS  Google Scholar 

  43. Ho TWC, Kawaminami M, Walker AM. Secretion of phosphorylated and non-phosphorylated monomer prolactin isoforms during rat pregnancy and pseudopregnancy. Endocrine 1993;1:435–9.

    Google Scholar 

  44. Johnson TE, Vue M, Brekhus S, Khong A, Ho TWC, Walker AM. Unmodified prolactin (PRL) promotes PRL secretion and acidophil hypertrophy and is associated with pituitary hyperplasia in female rats. Endocrine 2003;20:101–10.

    Article  PubMed  CAS  Google Scholar 

  45. Williams VL, DeGuzman A, Dang H, Kawaminami M, Ho TWC, Carter DG, Walker AM. Common and specific effects of the two major forms of prolactin (PRL) in the rat testis. Am J Physiol 2007;293:E1795–803.

    Article  CAS  Google Scholar 

  46. Chen TJ, Kuo C-YB, Tsai KF, Liu J-W, Chen D-Y, Walker AM. Development of recombinant human prolactin receptor antagonists by molecular mimicry of the phosphorylated hormone. Endocrinology 1998;139:609–16.

    Article  PubMed  CAS  Google Scholar 

  47. Wu W, Coss D, Lorenson MY, Kuo CB, Xu X, Walker AM. Different biological effects of unmodified prolactin and a molecular mimic of phosphorylated prolactin involve different signaling pathways. Biochemistry 2003;42:7561–70.

    Article  PubMed  CAS  Google Scholar 

  48. Wicks JR, Brooks CL. Prolactin kinase activity in bovine anterior pituitary sub-cellular fractions. Mol Cell Endocrinol 1999;147:125–32.

    Article  PubMed  CAS  Google Scholar 

  49. Liu JW, Walker AM. Long term effect of estradiol and thyrotropin releasing hormone on the release of non-phosphorylated and phosphorylated monomer prolactin in vitro. Abstract 1363, 76th Annual meeting of the Endocrine Soc, Anaheim, CA 1994.

  50. Naylor MJ, Oakes SR, Gardiner-Garden M, Harris J, Blazek K, Ho TWC, Li FC, Wynick D, Walker AM, Ormandy CJ. Transcriptional changes underlying the secretory activation phase of mammary gland development. Mol Endocrinol 2005;19:1868–83.

    Article  PubMed  CAS  Google Scholar 

  51. Wynick D, Bacon A. Targeted disruption of galanin: insights from knock-out studies. Neuropeptides 2002;36:132–44.

    Article  PubMed  CAS  Google Scholar 

  52. Horiguchi K, Fukuta S, Yoshida M, Kosugi T, Naito J, Ishida M, Harigaya T. Estrogen regulates the serum level of phosphorylated prolactin in mice. J Reprod Dev. 2007;53:915–22.

    Article  PubMed  CAS  Google Scholar 

  53. Grosvenor CE, Picciano MF, Baumrucker CR. Hormones and growth factors in milk. Endocr Rev 1993;14:710–28.

    Article  PubMed  CAS  Google Scholar 

  54. Ellis LA, Picciano MF. Bioactive and immunoreactive prolactin variants in human milk. Endocrinology 1995;136:2711–20.

    Article  PubMed  CAS  Google Scholar 

  55. Shry SW, Crowley WR, Grosvenor CE. Effect of neonatal prolactin deficiency on prepubertal tuberoinfundibular and tuberohypophyseal dopaminergic neuronal activity. Endocrinology 1986;119:1217–21.

    Article  Google Scholar 

  56. Olivier-Bousquet M. Transferrin and prolactin transcytosis in the lactating mammary epithelial cell. J Mammary Gland Biol Neoplasia 1998;3:303–13.

    Article  Google Scholar 

  57. Krown KA, Wang YF, Ho TWC, Kelly PA, Walker AM. Prolactin isoform 2 as an autocrine growth factor for GH3 cells. Endocrinology 1992;131:595–602.

    Article  PubMed  CAS  Google Scholar 

  58. Krown KA, Wang YF, Walker AM. Autocrine interaction between prolactin and its receptor occurs intracellularly in the 235-1 mammotroph cell line. Endocrinology 1994;134:1546–52.

    Article  PubMed  CAS  Google Scholar 

  59. Wittekind M, Reizer J, Deutscher J, Saier MH, Klevit RE. Common structural changes accompany the functional activation of HPr by seryl phosphorylation or by serine to aspartate substitution. Biochemistry 1989;28:9908–12.

    Article  PubMed  CAS  Google Scholar 

  60. Bernichtein S, Kinet S, Jeay S, Llovera M, Madern D, Kelly PA, Goffin V. S179D-human PRL, a pseudophosphorylated human PRL analog, is an agonist and not an antagonist. Endocrinology. 2001;142:3950–63.

    Article  PubMed  CAS  Google Scholar 

  61. Soares CRJ, Glezer A, Okazaki K, Ueda EKM, Heller SR, Walker AM, Goffin V, Bartolini P. Physico-chemical and biological characterizations of two human prolactin analogs exhibiting controversial bioactivity, synthesized in Chinese hamster ovary (CHO) cells. Protein Expr Purif 2006;48:182–94.

    PubMed  CAS  Google Scholar 

  62. Schroeder MD, Brockman JL, Walker AM, Schuler LA. Inhibition of prolactin (PRL)-induced proliferative signals in breast cancer cells by a molecular mimic of phosphorylated PRL, S179D PRL. Endocrinology 2003;144:5300–7.

    Article  PubMed  CAS  Google Scholar 

  63. Bridges R, Rigero B, Byrnes E, Yang L, Walker AM. Central infusions of the recombinant human prolactin receptor antagonist, S179D-PRL, delay the onset of maternal behavior in steroid-primed nulliparous female rats. Endocrinology 2001;142:730–9.

    Article  PubMed  CAS  Google Scholar 

  64. Kuo CB, Wu W, Xu X, Yang L, Chen C, Coss D, Birdsall B, Nasseri D, Walker AM. Pseudophosphorylated prolactin (S179D PRL) inhibits growth and promotes beta-casein gene expression in the rat mammary gland. Cell Tissue Res 2002;309:429–37.

    Article  PubMed  CAS  Google Scholar 

  65. Ormandy CJ, Camus A, Barra J, Damotte D, Lucas B, Buteau H, Edery M, Brousse N, Babinet C, Binart N, Kelly PA. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev 1997;11:167–78.

    Article  PubMed  CAS  Google Scholar 

  66. Hovey RC, Trott JF, Ginsburg E, Goldhar A, Sasaki MM, Fountain SJ, Sundararajan K, Vonderhaar BK. Transcriptional and spatiotemporal regulation of prolactin receptor mRNA and cooperativity with progesterone receptor function during ductal branch growth in the mammary gland. Dev Dyn 2001;222:192–205.

    Article  PubMed  CAS  Google Scholar 

  67. Ueda E, Ozerdem U, Chen YH, Yao M, Huang KT, Sun H, Martins-Green M, Bartolini P, Walker AM. A molecular mimic demonstrates that phosphorylated human prolactin is a potent anti-angiogenic hormone. Endocr Relat Cancer 2006;13:95–111.

    Article  PubMed  CAS  Google Scholar 

  68. Ueda E, Lo H-L, Bartolini P, Walker AM. S179D prolactin (PRL) primarily uses the extrinsic pathway and MAPkinase signaling to induce apoptosis in human endothelial cells. Endocrinology 2006;147:4627–37.

    Article  PubMed  CAS  Google Scholar 

  69. Struman I, Bentzien F, Lee H, Mainfroid V, D’Angelo G, Goffin V, Weiner RI, Martial JA. Opposing actions of intact and N-terminal fragments of the human prolactin/growth hormone family members on angiogenesis: an efficient mechanism for the regulation of angiogenesis. Proc Natl Acad Sci USA. 1999;96:1246–51.

    Article  PubMed  CAS  Google Scholar 

  70. Bernichtein S, Jeay S, Vaudry R, Kelly PA, Goffin V. New homologous bioassays for human lactogens show that agonism or antagonism of various analogs is a function of assay sensitivity. Endocrine 2003;20:177–89.

    Article  PubMed  CAS  Google Scholar 

  71. Krishna MM, Lin Y, Englander SW. Protein misfolding: optional barriers, misfolded intermediates, and pathway heterogeneity. J Mol Biol. 2004;343:1095–109.

    Article  PubMed  CAS  Google Scholar 

  72. Mershon J, Sall W, Mitchner N, Ben-Jonathan N. Prolactin is a local growth factor in rat mammary tumors. Endocrinology 1995;136:3619–23.

    Article  PubMed  CAS  Google Scholar 

  73. Chen NY, Holle L, Li W, Peirce SK, Beck MT, Chen WY. In vivo studies of the anti-tumor effects of a human prolactin antagonist, hPRL-G129R. Int J Oncol 2002;20:813–8.

    PubMed  CAS  Google Scholar 

  74. Goffin V, Bernichtein S, Touraine P, Kelly PA. Development and potential clinical uses of human prolactin receptor antagonists. Endocr Rev 2005;26:400–22.

    Article  PubMed  CAS  Google Scholar 

  75. Wu W, Chen YH, Ueda E, Tan D, Bartolini P, Walker AM. Different forms of prolactin have opposing effects on the expression of cell cycle regulatory proteins in differentiated mammary epithelial cells. Oncol Res 2006;16:75–84.

    PubMed  CAS  Google Scholar 

  76. Zinser GM, Welsh J. Accelerated mammary gland development during pregnancy and delayed postlactational involution in vitamin D3 receptor null mice. Mol Endocrinol 2004;18:2208–23.

    Article  PubMed  CAS  Google Scholar 

  77. Tan D, Johnson DA, Wu W, Zeng L, Chen YH, Chen WY, Vonderhaar BK, Walker AM. Unmodified prolactin (PRL) and S179D PRL-initiated bioluminescence resonance energy transfer between homo- and hetero-pairs of long and short PRL receptors in living human cells. Mol Endocrinol 2005;19:1291–303.

    Article  PubMed  CAS  Google Scholar 

  78. Chang WP, Clevenger CV. Modulation of growth factor receptor function by isoform heterodimerization. Proc Natl Acad Sci U S A 1996;93:5947–52.

    Article  PubMed  CAS  Google Scholar 

  79. Wu W, Ginsburg E, Vonderhaar BK, Walker AM. S179D prolactin increases vitamin D receptor and p21 through upregulation of short 1b prolactin receptor in human prostate cancer cells. Cancer Res 2005;65:7509–15.

    Article  PubMed  CAS  Google Scholar 

  80. Cerignoli F, Rahmouni S, Ronai Z, Mustelin T. Regulation of MAP kinases by the VHR dual-specific phosphatase: implications for cell growth and differentiation. Cell cycle 2006;5:2210–5.

    PubMed  CAS  Google Scholar 

  81. Tan D, Huang KT, Ueda E, Walker AM. S2 deletion variants of human prolactin receptors demonstrate that extracellular domain conformation can alter conformation of the intracellular signaling domain. Biochemistry 2007;47:479–89.

    Article  PubMed  CAS  Google Scholar 

  82. Binart N, Imbert-Bollore P, Baran N, Vigliaetta C, Kelly PA. A short form of the prolactin (PRL) receptor is able to rescue mammopoiesis in heterozygous PRL receptor mice. Mol Endocrinol 2003;17:1066–74.

    Article  PubMed  CAS  Google Scholar 

  83. Roskelley CD, Desprez PY, Bissell MJ. Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proc Natl Acad Sci U S A. 1994;91:12378–82.

    Article  PubMed  CAS  Google Scholar 

  84. Xu R, Spencer VA, Bissell MJ. Extracellular matrix-regulated gene expression requires cooperation of SWI/SNF and transcription factors. J Biol Chem 2007;282:14992–9.

    Article  PubMed  CAS  Google Scholar 

  85. Gourdou I, Gabou L, Paly J, A Kermabon AY, Belair L, Djiane J. Development of a constitutively active mutant form of the prolactin receptor, a member of the cytokine receptor family. Mol Endocrinol 1996;10:45–56.

    Article  PubMed  CAS  Google Scholar 

  86. Lee RC, Walters JA, Reyland ME, Anderson SM. Constitutive activation of the prolactin receptor results in the induction of growth factor-independent proliferation and constitutive activation of signaling molecules. J Biol Chem 1999;274:10024–34.

    Article  PubMed  CAS  Google Scholar 

  87. Meng J, Tsai-Morris CH, Dufau ML. Human prolactin receptor variants in breast cancer: low ratio of short forms to the long-form human prolactin receptor associated with mammary carcinoma. Cancer Res 2004;64:5677–82.

    Article  PubMed  CAS  Google Scholar 

  88. Walker AM. S179D prolactin: antagonistic agony. Mol Cell Endocrinol 2007;276:1–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work supported by California Breast Cancer Research Program grant, 10PB0127 and by a Department of Defense Breast Cancer Research Program predoctoral fellowship to KT Huang, BC051103. Also acknowledged is prior support from the Department of Defense Breast Cancer Research Program, DAMD 17-00-1-0180. The authors would also like to acknowledge all previous and current members of the Walker lab and collaborators who have contributed to knowledge and discussions in the areas discussed

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameae M. Walker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, K., Ueda, E., Chen, Y. et al. Paradigm-Shifters: Phosphorylated Prolactin and Short Prolactin Receptors. J Mammary Gland Biol Neoplasia 13, 69–79 (2008). https://doi.org/10.1007/s10911-008-9072-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-008-9072-x

Keywords

Navigation