Skip to main content
Log in

ATS drugs molecular structure representation using refined 3D geometric moment invariants

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The campaign against drug abuse is fought by all countries, most notably on ATS drugs. The identification process of ATS drugs depends heavily on its molecular structure. However, the process becomes more unreliable due to the introduction of new, sophisticated, and increasingly complex ATS molecular structures. Therefore, distinctive features of ATS drug molecular structure need to be accurately obtained. In this paper, two variants of refined 3D geometric moment invariants for ATS drug molecular structure representation are discussed. This paper is also meant for comparing the performance of these two variants. The comparison was conducted using drug chemical structures obtained from Isomer Design’s PiHKaL.info database for the ATS drugs, while non-ATS drugs are obtained randomly from ChemSpider database. The assessment highlights the best technique which is suitable to be further explored and improved in the future studies so that it is wholly attuned with ATS drug molecular similarity search domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.J. Langman, L.D. Bowers, J.A. Collins, C.A. Hammett-Stabler, M.A. LeBeau, Gas Chromatography/mass Spectrometry Confirmation of Drugs; Approved Guidelines, 2nd edn. (Clinical and Laboratory Standards Institute, Pennsylvania, 2010)

  2. United Nations Office of Drugs and Crime: Recommended Methods for the Identification and Analysis of Amphetamine, Methamphetamine and Their Ring-substituted Analogues in Seized Materials, in vol. Sales No. E.06.XI.1. UNODC, New York (2006)

  3. D.-L. Lin, R.-M. Yin, L.H. Ray, Gas chromatography–mass spectrometry (GC–MS) analysis of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine in human hair and hair sections. J. Food Drug Anal. 13(3), 193–200 (2005)

    CAS  Google Scholar 

  4. J.J. McShane, GC-MS is Not Perfect: The Case Study of Methamphetamine (2011). http://www.thetruthaboutforensicscience.com/gc-ms-is-not-perfect-the-case-study-of-methamphetamine/. Accessed 26 Nov 2012

  5. International Union of Pure and Applied Chemistry: Compendium of Chemical Terminology, 2nd edn. Gold Book. (Blackwell Scientific Publications, Oxford, 2006)

  6. J. Mendelson, N. Uemura, D. Harris, R.P. Nath, E. Fernandez, P. Jacob III, E.T. Everhart, R.T. Jones, Human pharmacology of the methamphetamine stereoisomers. Clin. Pharmacol. Ther. 80(4), 403–420 (2006). doi:10.1016/j.clpt.2006.06.013

    Article  CAS  Google Scholar 

  7. R. Todeschini, V. Consonni, Descriptors from molecular geometry, in Handbook of Chemoinformatics. (Wiley-VCH Verlag GmbH, 2008), pp. 1004–1033

  8. A.K. Muda, Authorship Invarianceness for Writer Identification Using Invariant Discretization and Modified Immune Classifier. Universiti Teknologi Malaysia (2009)

  9. V. Consonni, R. Todeschini, Basic Requirements for Valid Molecular Descriptors (2006). http://www.moleculardescriptors.eu/tutorials/T3_moleculardescriptors_requirements.pdf

  10. M. Randić, Molecular bonding profiles. J. Math. Chem. 19(3), 375–392 (1996). doi:10.1007/bf01166727

    Article  Google Scholar 

  11. D. Kihara, L. Sael, R. Chikhi, J. Esquivel-Rodriguez, Molecular surface representation using 3D Zernike descriptors for protein shape comparison and docking. Curr. Protein Pept. Sci. 12, 520–530 (2011)

    Article  CAS  Google Scholar 

  12. J. Flusser, T. Suk, B. Zitová, Moments and Moment Invariants in Pattern Recognition, vol. 1 (Wiley, West Sussex, 2009)

    Book  Google Scholar 

  13. M.-K. Hu, Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962). doi:10.1109/TIT.1962.1057692

    Article  Google Scholar 

  14. F.A. Sadjadi, E.L. Hall, Three-dimensional moment invariants. IEEE Trans. Pattern Anal. Mach. Intell. 2(2), 127–136 (1980). doi:10.1109/TPAMI.1980.4766990

    Article  CAS  Google Scholar 

  15. K.M. Hosny, Exact and fast computation of geometric moments for gray level images. Appl. Math. Comput. 189(2), 1214–1222 (2007). doi:10.1016/j.amc.2006.12.025

    Google Scholar 

  16. P.T. Yap, R. Paramesran, An efficient method for the computation of Legendre moments. IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1996–2002 (2005). doi:10.1109/TPAMI.2005.232

    Article  Google Scholar 

  17. T. Suk, J. Flusser, Tensor method for constructing 3D moment invariants, in Computer Analysis of Images and Patterns, Sevilla, Spain 2011, ed. by A. Berciano, D. Díaz-Pernil, W.G. Kropatsch, H. Molina-Abril, P. Real (Springer, Berlin, 2011), pp. 213–219

    Google Scholar 

  18. W.-G. Lin, S.-S. Wang, A note on the calculation of moments. Pattern Recognit. Lett. 15(11), 1065–1070 (1994). doi:10.1016/0167-8655(94)90121-x

    Article  Google Scholar 

  19. J. Flusser, Refined moment calculation using image block representation. IEEE Trans. Image Process. 9(11), 1977–1978 (2000). doi:10.1109/83.877219

    Article  CAS  Google Scholar 

  20. S.X. Liao, M. Pawlak, On image analysis by moments. IEEE Trans. Pattern Anal. Mach. Intell. 18(3), 254–266 (1996). doi:10.1109/34.485554

    Article  Google Scholar 

  21. S.F. Pratama, A.K. Muda, Y.-H. Choo, A. Abraham, Exact computation of 3D geometric moment invariants for ATS drugs identification, in Innovations in Bio-Inspired Computing and Applications, vol. 424. Advances in Intelligent Systems and Computing, ed. by V. Snášel, A. Abraham, P. Krömer, M. Pant, A.K. Muda (Springer, Berlin, 2016), pp. 347–358

    Chapter  Google Scholar 

  22. D. Xu, H. Li, Geometric moment invariants. Pattern Recognit. 41(1), 240–249 (2008)

    Article  Google Scholar 

  23. S.F. Pratama, A.K. Muda, Y.-H. Choo, A. Abraham, 3D geometric moment invariants for ATS drugs identification: a more precise approximation, in Proceedings of the 16th International Conference on Hybrid Intelligent Systems (HIS 2016), ed. by A. Abraham, A. Haqiq, A.M. Alimi, G. Mezzour, N. Rokbani, A.K. Muda (Springer, Cham 2017) pp. 124–133 (2017)

  24. Isomer Design: pihkal.info (2015)

  25. Royal Society of Chemistry: ChemSpider Database (2015)

  26. ChemAxon Ltd.: Marvin (2016). http://www.chemaxon.com

  27. Min, P.: binvox 3D mesh voxelizer (2016). http://www.patrickmin/binvox

  28. Jmol: Jmol: an open-source Java viewer for chemical structures in 3D (2016). http://www.jmol.org/

  29. L. Breiman, Random Forests. Machine Learning, 45(1), 5–32 (2001). doi:10.1023/A:1010933404324

Download references

Acknowledgements

This study is supported by UTeM Postgraduate Fellowship (Zamalah) Scheme from Universiti Teknikal Malaysia Melaka (UTeM), Malaysia and Collaborative Research Programme (CRP)—ICGEB Research Grant (CRP/MYS13-03) from International Centre for Genetic Engineering and Biotechnology (ICGEB), Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azah Kamilah Muda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pratama, S.F., Muda, A.K., Choo, YH. et al. ATS drugs molecular structure representation using refined 3D geometric moment invariants. J Math Chem 55, 1951–1963 (2017). https://doi.org/10.1007/s10910-017-0775-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-017-0775-3

Keywords

Navigation