Skip to main content
Log in

Threshold dynamics of a stochastic Keizer’s model with stochastic incidence

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we incorporate stochastic incidence of a chemical reaction into the standard Keizer’s open chemical reaction. We prove that a positive stationary distribution (PSD) for the associated chemical master equation exists and is globally asymptotically stable. We present threshold dynamics of the stochastic Keizer’s model in term of the profile of the PSD for both finite and infinite volume size V. This establishes a sharp link between deterministic Keizer’s model and the stochastic model. In this way, we resolve Keizer’s paradox from a new perspective. This simple model reveals that such stochastic incidence incorporated, though negligible when V goes to infinity, may play an indispensable role in the stochastic formulation for irreversible biochemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. E.J. Allen, L.J.S. Allen, H. Schurz, A comparison of persistence-time estimation for discrete and continuous stochastic population models that include demographic and environmental variability. Math. Biosci. 196, 14–38 (2005)

    Article  Google Scholar 

  2. L.J.S. Allen, An Introduction to Stochastic Processes with Applications to Biology, 2nd edn. (CRC Press, Boca Raton, 2011)

    Google Scholar 

  3. L.J.S. Allen, G.E. Jr, Lahodny, Extinction thresholds in deterministic and stochastic epidemic models. J. Biol. Dyn. 6, 590–611 (2012)

    Article  Google Scholar 

  4. L.M. Bishop, H. Qian, Stochastic bistability and bifurcation in a mesoscopic signaling system with autocatalytic kinase. Biophys. J. 98, 1–11 (2010)

    Article  CAS  Google Scholar 

  5. P. Childs, J.P. Keener, Slow manifold reduction of a stochastic chemical reaction: exploring Keizer’s paradox. DCDS-B 17, 1775–1794 (2012)

    Article  Google Scholar 

  6. J.R. Chazottes, P. Collet, S. Méléard, Sharp asymptotics for the quasi-stationary distribution of birth-and-death processes. Probab. Theory Relat. 164, 285–332 (2016)

    Article  Google Scholar 

  7. G.E. Jr. Lahodny, Persistence or extinction of disease in stochastic epidemic models and dynamically consistent discrete Lotka-Volterra competition models, Ph.D. dissertation, Texas Tech University, Lubbock, Texas, 2012

  8. M.Y. Li, C. Xu, A limit threshold theorem for a Markov chain SIS epidemic model, preprint

  9. I. Nåsell, The quasi-stationary distribution of the closed endemic SIS model. Adv. Appl. Probab. 28, 895–932 (1996)

    Article  Google Scholar 

  10. I. Nåsell, Extinction and quasi-stationarity in the Verhulst logistic model. J. Theor. Biol. 211, 11–27 (2001)

    Article  Google Scholar 

  11. O. Ovaskainen, B. Meerson, Stochastic models of population extinction. Trends Ecol. Evol. 25, 643–652 (2010)

    Article  Google Scholar 

  12. Z. Schuss, Theory and Applications of Stochastic Processes: An Analytical Approach (Springer, New York, 2010)

    Book  Google Scholar 

  13. H.M. Taylor, S. Karlin, An Introduction to Stochastic Modeling, 3rd edn. (Academic Press, New York, 1998)

    Google Scholar 

  14. M. Vellela, H. Qian, A quasistationary analysis of a stochastic chemical reaction: Keizers paradox. Bull. Math. Biol. 69, 1727–1746 (2007)

    Article  Google Scholar 

  15. M. Vellela, H. Qian, Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlögl model revisited. J. R. Soc. Interface. 6, 925–940 (2009)

    Article  CAS  Google Scholar 

  16. C. Xu, Strong Allee effect in a stochastic logistic model with mate limitation and stochastic immigration. DCDS-B 21, 2321–2336 (2016)

    Article  Google Scholar 

  17. Y. Zhang, H. Ge, H. Qian, Vant Hoff-Arrhenius analysis of mesoscopic and macroscopic dynamics of simple biochemical systems: Stochastic vs. Nonlinear bistabilities (2010), arXiv:1011.2554

Download references

Acknowledgements

The author is indebt to Professor Hong Qian at the University of Washington, Seattle, for bringing reference [5] to the author’s attention. The author is also indebt to one anonymous referee for bringing references [7, 12] to the author’s attention, and appreciates both of the anonymous referees’ valuable comments and suggestions which greatly improve the presentation of this paper. This research was supported in part by China Scholarship Council Visiting Scholarship, University of Alberta Doctoral Recruitment Scholarship, Pundit RD Sharma Memorial Graduate Award, Eoin L. Whitney Scholarship, Josephine Mitchell Graduate Scholarship and Pacific Institute for the Mathematical Sciences(PIMS) Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang Xu.

Appendix: Proofs of main results

Appendix: Proofs of main results

Proof of Theorem 4.1

By (3.1),

$$\begin{aligned} \frac{p_{n+1}^s}{p_n^s}=\displaystyle \frac{R_0(\frac{n}{V}+\frac{\varepsilon _n}{k_1})}{\frac{n+1}{V}\Big (1+\frac{k_{-1}}{k_2}\cdot \frac{n}{V}\Big )}. \end{aligned}$$
(5.1)

If \(R_0\leqslant 1,\) by (5.1) and assumption \(\mathrm{(H1)},\)

$$\begin{aligned} \frac{p_{n+1}^s}{p_n^s}<\frac{R_0}{1+\frac{k_{-1}}{k_2}\cdot \frac{n}{V}}\leqslant R_0\leqslant 1, \forall \ n\in {\mathbb {N}}, \end{aligned}$$

which proves (a).

Now suppose that \(R_0>1\). From (5.1), to find \(n_{\max }\), we need to locate n for \(p^s_{n+1}=p^s_n\). Denote by \(n_{\pm }/V\) the roots of the following quadratic equation for every \(n\in {\mathbb {N}}:\)

$$\begin{aligned} \frac{k_{-1}}{k_2}x^2+\left( 1-R_0+\frac{k_{-1}}{k_2V}\right) x+\frac{1}{V}-\frac{R_0\varepsilon _n}{k_1}=0. \end{aligned}$$

Notice that the limits \(n_{\pm }/V\) as \(V\rightarrow \infty \) satisfy

$$\begin{aligned} \frac{k_{-1}}{k_2}x^2+(1-R_0)x=0, \end{aligned}$$

i.e.,

$$\begin{aligned} n_+/V\rightarrow x_*,\ n_-/V\rightarrow 0,\ \text {as}\ V\rightarrow \infty . \end{aligned}$$
(5.2)

In fact, by regular perturbation theory and \(\mathrm{(H1)},\) it is straightforward to deduce that

$$\begin{aligned} n_+= & {} x_*V-\frac{R_0}{R_0-1}+O(1/V,V\varepsilon _n),\ \forall \ n\in {\mathbb {N}},\\ n_-= & {} \frac{1}{R_0-1}+O(1/V,V\varepsilon _n),\ \forall \ n\in {\mathbb {N}}. \end{aligned}$$

Let \(n_{\min }\in \left\{ \left[ \frac{1}{R_0-1}\right] ,\left[ \frac{1}{R_0-1}\right] +1\right\} \) be such that \(p^s_{n_{\min }}=\min \left\{ p^s_{\left[ \frac{1}{R_0-1}\right] },p^s_{\left[ \frac{1}{R_0-1}\right] +1}\right\} \) and \(n_{\max }\in \left\{ \left[ x_*V-\frac{R_0}{R_0-1}\right] ,\left[ x_*V-\frac{R_0}{R_0-1}\right] +1\right\} \) be such that \(p^s_{n_{\max }}=\max \bigg \{p^s_{\left[ x_*V-\frac{R_0}{R_0-1}\right] },\) \(p^s_{\left[ x_*V-\frac{R_0}{R_0-1}\right] +1}\bigg \}.\) Then the monotonicity of \(p^s\) follows:

$$\begin{aligned} p^s_0\ge \cdots \ge p^s_{n_{\min }}\le p^s_{n_{\min }+1}\le \cdots \le p^s_{n_{\max }}\ge p^s_{n_{\max }+1}\ge \cdots \cdots . \end{aligned}$$

Finally, for all large V\(p^s_{n_{\max }}>p^s_0\) follows from \(\lim _{V\rightarrow \infty }\frac{p^s_{n_{\max }}}{p^s_0}=+\infty ,\) implied by Propositions 5.1 and 5.2 below. \(\square \)

Proposition 5.1

Let \(\psi \) be defined in (4.1).

  1. (a)

    If \(R_0\leqslant 1,\) then \(\psi (x)\) is decreasing and thus \(\psi (x)<0,\ \forall \ x\in (0,+\infty ).\)

  2. (b)

    If \(R_0>1,\) then \(\psi (x)\) is increasing in \((0,x_*)\) and decreasing in \((x_*,+\infty ).\)

Proposition 5.2

Assume that \(\mathrm{(H1)}\) holds. Then for every \(\lim _{V\rightarrow \infty }\frac{n}{V}=x>0,\)

$$\begin{aligned} \limsup _{V\rightarrow \infty }\frac{1}{V}\log \frac{p_n^s}{p_0^s}\leqslant \psi (x). \end{aligned}$$
(5.3)

Moreover, assume \(\mathrm{(H2)}\) holds, then

$$\begin{aligned} \lim _{V\rightarrow \infty }\frac{1}{V}\log \frac{p_n^s}{p_0^s}=\psi (x); \end{aligned}$$
(5.4)

in particular, if \(\underset{V\rightarrow \infty }{\lim }\frac{n_1}{V}=x_1>0\) and \(\underset{V\rightarrow \infty }{\lim }\frac{n_2}{V}=x_2>0,\) then

$$\begin{aligned} \lim _{V\rightarrow \infty }\frac{1}{V}\log \frac{p_{n_1}^s}{p_{n_2}^s}=\psi (x_1)-\psi (x_2). \end{aligned}$$
(5.5)

Proof

Note that

$$\begin{aligned} \begin{aligned} \frac{1}{V}\log \frac{p_n^s}{p_0^s}=&\frac{1}{V}\sum _{j=0}^{n-1}\log \frac{R_0(\frac{j}{V}+\frac{\varepsilon _j}{k_1})}{\frac{j+1}{V}\left( 1+\frac{k_{-1}}{k_2}\cdot \frac{j}{V}\right) }\\ =&\frac{1}{V}\log \frac{R_0V\varepsilon _0}{k_1}+\frac{1}{V}\sum _{j=1}^{n-1}\left( \log \left( 1+\frac{V\varepsilon _j}{k_1 j}\right) \right. \\&\left. +\log \frac{j}{j+1}\right) +\frac{1}{V}\sum _{j=1}^{n-1}\log \frac{R_0}{1+\frac{k_{-1}}{k_2}\frac{j}{V}}\\ =&\frac{1}{V}\log \frac{R_0V\varepsilon _0}{k_1}+\frac{1}{V}\sum _{j=1}^{n-1}\log \left( 1+\frac{V\varepsilon _j}{k_1 j}\right) +\frac{1}{V}\cdot \log \frac{1}{n}\\&+\frac{1}{V}\sum _{j=1}^{n-1}\log \frac{R_0}{1+\frac{k_{-1}}{k_2}\frac{j}{V}}. \end{aligned} \end{aligned}$$
(5.6)

By \(\mathrm{(H1)},\)

$$\begin{aligned} \frac{1}{V}\cdot \log \frac{1}{n}\leqslant & {} \frac{1}{V}\sum _{j=1}^{n-1}\log \left( 1+\frac{V\varepsilon _j}{k_1 j}\right) +\frac{1}{V}\cdot \log \frac{1}{n}\nonumber \\\leqslant & {} \frac{1}{V}\sum _{j=1}^{n-1}\log \left( 1+\frac{1}{j}\right) +\frac{1}{V}\cdot \log \frac{1}{n}=0, \end{aligned}$$

which implies (5.3). If \(\mathrm{(H2)}\) holds, then

$$\begin{aligned} \frac{1}{V}\log \frac{R_0V\varepsilon _0}{k_1}\rightarrow 0,\ \text {as}\ V\rightarrow \infty . \end{aligned}$$

Thus the first three terms of RHS of (5.6) vanish as \(V\rightarrow \infty .\) The last term is the Riemann sum for the integral \(\psi (x).\) This proves the proposition. \(\square \)

Proof of Theorem 4.2

We only prove case (b). Case (a) can be proved using similar arguments. Let X be the number of species X,  a random variable. In the following, it suffices to show that, for all sufficiently small \(\delta \in (0,x_*),\)

$$\begin{aligned} {\mathbb {P}}[|X/V-x_*|>\delta ]\rightarrow 0, \text {as}\ V\rightarrow \infty . \end{aligned}$$
(5.7)

It follows from Proposition 5.1 that \(\psi \) achieves its positive maximum at \(x_*.\) By (5.5), there exists \(V_0:=V_0(\delta )>0\) such that \(\forall \ V>V_0,\)

$$\begin{aligned} p_0^s< & {} p^s_{[x_*V]}e^{-V\psi (x_*)/2},\\ p_{[(x_*-\delta )V]}^s< & {} p^s_{[x_*V]}e^{-V(\psi (x_*)-\psi (x_*-\delta ))/2} \end{aligned}$$

and

$$\begin{aligned} p_{[(x_*+\delta )V]}^s<p^s_{[x_*V]}e^{-V(\psi (x_*)-\psi (x_*+\delta ))/2}. \end{aligned}$$

Note that \(\psi (x_*)>0.\) By continuity of \(\psi ,\) assume without loss of generality that \(\psi (x_*\pm \delta )>0\) and \(\delta <\min \left\{ x_*,\frac{k_2}{k_{-1}}\right\} \). Hence by Theorem 4.1 (b), there exists \(V_1>V_0,\) such that for all \(V>V_1,\)

$$\begin{aligned} p_{n}^s\leqslant p_{[(x_*-\delta )V]}^s<p^s_{[x_*V]}e^{-V/2\cdot (\psi (x_*)-\psi (x_*-\delta ))},\ \forall \ 0\leqslant n\leqslant [(x_*-\delta )V] \end{aligned}$$

and

$$\begin{aligned} p_{n}^s\leqslant p_{[(x_*+\delta )V]}^s<p^s_{[x_*V]}e^{-V/2\cdot (\psi (x_*)-\psi (x_*+\delta ))},\ \forall \ n\geqslant [(x_*+\delta )V], \end{aligned}$$

By \(\mathrm {(H1)},\)

$$\begin{aligned} \frac{p_{n+1}^s}{p_n^s}<\frac{R_0}{1+\frac{k_{-1}}{k_2}\cdot \frac{n}{V}}<\frac{R_0}{1+R_0},\ \forall \ n\geqslant \left[ \frac{k_2R_0}{k_{-1}}V\right] +1. \end{aligned}$$

Then it follows from \(\delta <\frac{k_2}{k_{-1}}\) that

$$\begin{aligned} \sum _{n=\left[ \frac{k_2R_0}{k_{-1}}V\right] +1}^{\infty }p_n^s\leqslant & {} p^s_{1+\left[ \frac{k_2R_0}{k_{-1}}V\right] }\cdot \frac{1}{1-\frac{R_0}{1+R_0}}=(R_0+1)p^s_{1+[\frac{k_2R_0}{k_{-1}}V]}\nonumber \\\leqslant & {} (R_0+1)p_{[(x_*+\delta )V]}^s,\ \forall \ V>V_1. \end{aligned}$$

Hence for all \(V>V_1,\)

$$\begin{aligned} \begin{aligned}&{\mathbb {P}}[|X/V-x_*|>\delta ]\\&\quad \leqslant \sum _{n=0}^{\left[ \frac{1}{R_0-1}\right] }p_n^s+\sum _{n=\left[ \frac{1}{R_0-1}\right] +1}^{[(x_*-\delta )V]}p_n^s+\sum _{n=[(x_*+\delta )V]}^ {\left[ \frac{k_2R_0}{k_{-1}}V\right] }p_n^s+\sum _{n=1+\left[ \frac{k_2R_0}{k_{-1}}V\right] }^{\infty }p_n^s\\&\quad <\left( \left[ \frac{1}{R_0-1}\right] +1\right) p^s_{[x_*V]}e^{-V\psi (x_*)/2}\\&\qquad +\left( [(x_*-\delta )V]-\left[ \frac{1}{R_0-1}\right] \right) p^s_{[x_*V]}e^{-V(\psi (x_*) -\psi (x_*-\delta ))/2}\\&\qquad +\left( \left[ \frac{k_2R_0}{k_{-1}}V\right] -[(x_*+\delta )V]+1\right) p^s_{[x_*V]}e^{-V/2\cdot (\psi (x_*)-\psi (x_*+\delta ))}\\&\qquad +(R_0+1)p^s_{[x_*V]}e^{-V(\psi (x_*) -\psi (x_*+\delta ))/2}\\&\quad \leqslant \left( \left[ \frac{k_2R_0}{k_{-1}}V\right] +R_0+3\right) e^{-V/2\cdot d}, \end{aligned} \end{aligned}$$

with \(d=\min \{\psi (x_*)-\psi (x_*-\delta ),\psi (x_*)-\psi (x_*+\delta )\}>0.\) This shows that (5.7) \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C. Threshold dynamics of a stochastic Keizer’s model with stochastic incidence. J Math Chem 55, 1034–1045 (2017). https://doi.org/10.1007/s10910-016-0730-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0730-8

Keywords

Navigation