Skip to main content
Log in

Turing patterns created by cross-diffusion for a Holling II and Leslie-Gower type three species food chain model

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we develop a theoretical framework for a research into spatial patterns in a three-species Holling II and Leslie-Gower type food chain model with cross-diffusion, the results of which show that the cross-diffusion induces the spatial patterns. When biological pattern formation has been concerned with the method of reaction-diffusion theory, in most of the previous works, as a precondition, the assumption of the existence of nonhomogeneous steady state is presented essentially. We give a rigorous proof to the assumption that the model has at least a nonhomogeneous stationary solution by the Leray-Schauder degree theory. Moreover, the numerical simulations for spatial pattern is also carried out, we propose a method to estimate the wavenumber of the spatial patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turing A.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 237, 37–72 (1952)

    Article  Google Scholar 

  2. Noszticzius Z., Horsthemke W., McCormick W.D., Swinney H.L., Tam W.Y.: Sustained chemical waves in an annular gel reactor: A chemical pinwheel. Nature 329, 619–620 (1987)

    Article  CAS  Google Scholar 

  3. Tam W.Y., Horsthemke W., Noszticzius Z., Swinney H.L.: Sustained spiral waves in a continuously fed unstirred chemical reactor. J. Chem. Phys. 88, 3395–3396 (1988)

    Article  CAS  Google Scholar 

  4. Ouyang Q., Noszticzius Z., Swinney H.L.: Spatial bistability of two-dimensional Turing patterns in a reaction-diffusion system. J. Phys. Chem. 96, 6773–6776 (1992)

    Article  CAS  Google Scholar 

  5. Castets V., Dulos E., Boissonade J., De Kepper P.: Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64, 2953–2956 (1990)

    Article  CAS  Google Scholar 

  6. De Kepper P., Castets V., Dulos E., Boissonade J.: Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction. Phys. D 49, 161–169 (1991)

    Article  CAS  Google Scholar 

  7. Maini P.K., Painter K.J., Phong C.H.N.: Spatial pattern formation in chemical and biological system. J. Chem. Soc. Faraday Trans. 93, 3601–3610 (1997)

    Article  CAS  Google Scholar 

  8. Maini P.K., Benson D.L., Sherratt J.A.: Pattern formation in reaction diffusion models with spatially inhomogeneous diffusion coefficients. IMA J. Math. Appl. Med. Biol. 9, 197–213 (1992)

    Article  Google Scholar 

  9. Crampin E.J., Gaffney E., Maini P.K.: Reaction and diffusion growing domains: Scenarios for robust pattern formation. Bull. Math. Biol. 61, 1093–1120 (1999)

    Article  CAS  Google Scholar 

  10. Painter K.J., Maini P.K., Othmer H.G.: Development and applications of a model for cellular response to multiple chemotactic cues. J. Math. Biol. 41, 285–314 (2000)

    Article  CAS  Google Scholar 

  11. Satnoianu R.A., Menzinger M., Maini P.K.: Turing instabilities in general systems. J. Math. Biol. 41, 493–512 (2000)

    Article  CAS  Google Scholar 

  12. Crampin E.J., Gaffney E., Maini P.K.: Mode-doubling and tripling in reaction-diffusion patterns on growing domains: a piecewise linear model. J. Math. Biol. 44, 107–128 (2002)

    Article  CAS  Google Scholar 

  13. Crampin E.J., Hackborn W.W., Maini P.K.: Pattern formation in reaction-diffusion models with nonuniform domain growth. Bull. Math. Biol. 64, 746–769 (2002)

    Article  Google Scholar 

  14. Miura T., Maini P.K.: Speed of pattern appearance in reaction-diffusion models: implications in the pattern formation of limb bud mesenchyme cells. Bull. Math. Biol. 66, 627–649 (2004)

    Article  Google Scholar 

  15. Baker R.E., Maini P.K.: A mechanism for morphogen-controlled domain growth. J. Math. Biol. 54, 597–622 (2007)

    Article  CAS  Google Scholar 

  16. Murray J.D.: Mathematical Biology of Biomathematics Texts, Vol. 19, 2nd edn. Springer, Berlin (2002)

    Google Scholar 

  17. Turanyi T.: Sensitivity analysis of complex kinetic systems: Tools and applications. J. Math. Chem. 5, 203–248 (1990)

    Article  CAS  Google Scholar 

  18. O.M. Daher, M.A. Aziz-Alaoui, On the dynamics of a predator-prey model with the Holling-Tanner functional response, MIRIAM Editions, Editor V. Capasso, Proc. ESMTB conf. pp. 270–278 (2002)

  19. Kareiva P., Odell G.: Swarms of preadatora exhibit “preytaxis” if individual predators use area-restricted. Search. Am. Nat. 130, 233–270 (1987)

    Google Scholar 

  20. Kuto K.: Stability of steady-state solutions to a prey-predator system with cross-diffusion. J. Differ. Equ. 197, 293–314 (2004)

    Article  Google Scholar 

  21. Kuto K., Yamada Y.: Multiple coexistence states for a prey-predator system with cross-diffusion. J. Differ. Equ. 197, 315–348 (2004)

    Article  Google Scholar 

  22. Lin Z.G.: A time delayed parabolic system in a three-species predator-prey model. Acta Math. Sin. (Chin. Ser.) 47, 559–568 (2004)

    Google Scholar 

  23. Lin Z.G., Pedersen M.: Stability in a diffusive food-chain model with Michaelis-Menten functional response. Nonlinear Anal. 57, 421–433 (2004)

    Article  Google Scholar 

  24. Rai B., Freedman H.I., Addicott J.F.: Analysis of three-species models of mutualism in predator-prey and competitive systems. Math. Biosci. 65(1), 13–50 (1983)

    Article  Google Scholar 

  25. Aziz-Alaoui M.A., Daher Okiye M.: Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes. Appl. Math. Lett. 16, 1069–1075 (2003)

    Article  Google Scholar 

  26. Nindjin A.F., Aziz-Alaoui M.A.: Persistence and global stability in a delayed Leslie-Gower-type three species food chain. J. Math. Anal. Appl. 340, 340–357 (2008)

    Article  Google Scholar 

  27. Pang P.Y.H., Wang M.X.: Strategy and stationary pattern in a three-species predator-prey model. J. Differ. Equ. 200, 245–273 (2004)

    Article  Google Scholar 

  28. Chen W., Peng R.: Stationary patterns created by cross-diffusion for the competitor-competitor-mutualist model. J. Math. Anal. Appl. 291, 550–564 (2004)

    Article  Google Scholar 

  29. Wang M.: Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion. Phys. D 196, 172–192 (2004)

    Article  Google Scholar 

  30. Wang M.: Stationary patterns caused by cross-diffusion for a three -species prey-predator model. Comput. Math. Appl. 52, 707–720 (2006)

    Article  Google Scholar 

  31. Peng R., Wang M., Yang G.: Stationary patterns of the Holling-Tanner prey-predator model with diffusion and cross-diffusion. Appl. Math. Comput. 196, 570–577 (2008)

    Article  Google Scholar 

  32. Barrio R.A., Varea C., Aragón J.L.: A two-dimensional numerical study of spatial pattern formation in interating Turing systems. Bull. Math. Biol. 61, 483–505 (1999)

    Article  CAS  Google Scholar 

  33. Barrio R.A., Varea C.: Non-linear systems. Phys. A 372, 210–223 (2006)

    Article  Google Scholar 

  34. Varea C., Aragón J.L., Barrio R.A.: Turing patterns on a sphere. Phys. Rev. E 60, 4588–4592 (1999)

    Article  CAS  Google Scholar 

  35. Ko W., Ahn I.: Analysis of ratio-dependent food chain model. J. Math. Anal. Appl. 339, 498–523 (2007)

    Article  Google Scholar 

  36. Henry D.: Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics 840. Springer, Berlin (1993)

    Google Scholar 

  37. Lin C.S., Ni W.M., Takagi I.: Large amplitude stationary solutions to a chemotaxis systems. J. Differ. Equ. 72, 1–27 (1988)

    Article  Google Scholar 

  38. Lou Y., Ni W.M.: Diffusion, self-diffusion and cross-diffusion. J. Differ. Equ. 131, 79–131 (1996)

    Article  Google Scholar 

  39. Nirenberg L.: Topics in Nonlinear Functional Analysiss. American Mathematical Society, Providence, RI (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canrong Tian.

Additional information

The work is partially supported by PRC grant NSFC 10801115.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, C. Turing patterns created by cross-diffusion for a Holling II and Leslie-Gower type three species food chain model. J Math Chem 49, 1128–1150 (2011). https://doi.org/10.1007/s10910-011-9801-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-011-9801-z

Keywords

Navigation