Skip to main content
Log in

The KISS Experiment

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Mapping millimetre continuum emission has become a key issue in modern multi-wavelength astrophysics. In particular, spectrum imaging at low-frequency resolution is an asset for characterising the clusters of galaxies via the Sunyaev–Zel’dovich effect. In this context, we have built a ground-based spectrum-imager named KIDs Interferometer Spectrum Survey (KISS). This instrument is based on two 316-pixel arrays of Kinetic Inductance Detectors (KID) cooled to 150 mK by a custom dilution refrigerator-based cryostat. By using Ti–Al and Al absorbers, we can cover a wide frequency range between 80 and 300 GHz. In order to preserve a large instantaneous field of view \(\sim 1^\circ \), the spectrometer is based on a Fourier transform interferometer. This represents a technological challenge due to the fast scanning speed that is needed to overcome the effects of background atmospheric fluctuations. KISS is installed at the QUIJOTE 2.25 m telescope in Tenerife since February 2019 and is currently in its commissioning phase. In this report, we present an overview of the instrument and the latest results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.A. Sunyaev, Y.B. Zeldovich, Astrophys. Space Sci. 7, 3 (1970). https://doi.org/10.1007/BF00653471

    Article  ADS  Google Scholar 

  2. F. Ruppin et al., A&A 615, 19 (2018). https://doi.org/10.1051/0004-6361/201732558

    Article  Google Scholar 

  3. A. Monfardini et al., A&A 521, 6 (2010). https://doi.org/10.1051/0004-6361/201014727

    Article  Google Scholar 

  4. R. Adam et al., A&A 609, A115 (2018). https://doi.org/10.1051/0004-6361/201731503

    Article  ADS  Google Scholar 

  5. A. Kosowsky et al., New Astron. Rev. 47, 939 (2003). https://doi.org/10.1016/j.newar.2003.09.003

    Article  ADS  Google Scholar 

  6. S.R. Dicker et al., Proc. SPIE 7020, 702005 (2008). https://doi.org/10.1117/12.788361

    Article  Google Scholar 

  7. Z. Staniszewski et al., Astrophys. J. 701(32), 3241 (2009). https://doi.org/10.1088/0004-637X/701/1/32

    Article  Google Scholar 

  8. T. Mroczkowski et al., ApJ 761, 47 (2012). https://doi.org/10.1088/0004-637X/761/1/47

    Article  ADS  Google Scholar 

  9. Planck Collaboration et al., A&A 594, A1 (2016). https://doi.org/10.1051/0004-6361/201527101

    Article  ADS  Google Scholar 

  10. J. Zmuidzinas, Annu. Rev. Condens. Matter Phys. 3, 169 (2012). https://doi.org/10.1146/annurev-conmatphys-020911-125022

    Article  Google Scholar 

  11. S.R. Golwala et al., Proc. SPIE 8452, 21 (2012). https://doi.org/10.1117/12.926055

    Article  Google Scholar 

  12. J. Baselmans, AtLAST (2018). https://doi.org/10.5281/zenodo.1158838

    Article  Google Scholar 

  13. A. Paiella et al., JACP (2019). https://doi.org/10.1088/1475-7516/2019/01/039

    Article  Google Scholar 

  14. A. Catalano et al., A&A 580, 6 (2015). https://doi.org/10.1051/0004-6361/201526206

    Article  Google Scholar 

  15. A. Endo et al., Proc. SPIE 8452, 84520X (2012). https://doi.org/10.1117/12.925637

    Article  Google Scholar 

  16. L. Chao-Te et al., Proc. SPIE (2018). https://doi.org/10.1117/12.2311415

    Article  Google Scholar 

  17. D.H. Martin, E. Puplett, Infrared Phys. 10, 105 (1970). https://doi.org/10.1016/0020-0891(70)90006-0

    Article  ADS  Google Scholar 

  18. J.C. Mather et al., Astrophys. J. 512, 511 (1999). https://doi.org/10.1086/306805

    Article  ADS  Google Scholar 

  19. Planck Collaboration et al., A&A 536, 31 (2011). https://doi.org/10.1051/0004-6361/201116486

    Article  Google Scholar 

  20. L.J. Swenson et al., Appl. Phys. Lett. 96, 263511 (2010). https://doi.org/10.1063/1.3459142

    Article  ADS  Google Scholar 

  21. A. Monfardini et al., J. Low Temp. Phys. 176, 787–795 (2015). https://doi.org/10.1007/s10909-013-0985-4

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fasano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fasano, A., Aguiar, M., Benoit, A. et al. The KISS Experiment. J Low Temp Phys 199, 529–536 (2020). https://doi.org/10.1007/s10909-019-02289-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02289-1

Keywords

Navigation