Skip to main content
Log in

Development of TES Microcalorimeters with Solar-Axion Converter

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Several issues in developing transition edge sensor (TES) microcalorimeters for the search of monochromatic solar axions expected at 14.4 keV are studied. The potential problem of developing TES’s of this purpose is in that an axion absorber of \(^{57}\)Fe must be placed in close vicinity of a TES. We estimated the minimum distance to avoid magnetic interference from iron using magnetic FEM simulations, and found it 30 \(\upmu \)m for an iron of 5 \(\upmu \)m thickness. We fabricated a TES with a 10 \(\upmu \)m thick iron membrane separated by 60 \(\upmu \)m. We confirmed the superconducting transition for this TES. However, both the residual normal resistance and the transition temperature was different from those of TES without iron. We also estimated the low-temperature thermal conductivity of an iron membrane by measuring the low-temperature electrical resistance and by applying the Wiedemann–Franz law. We estimated the pulse-shape dependency on the interaction position within the \(^{57}\)Fe converted using thermal FEM simulations. We found that the pulse-shape variations will limit the energy resolution to about 30 eV FWHM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Moriyama, Phys. Rev. Lett. 75, 3222 (1995)

    Article  ADS  Google Scholar 

  2. J. Engel, D. Seckel, A.C. Hayes, Phys. Rev. Lett. 65, 960 (1990)

    Article  ADS  Google Scholar 

  3. G.G. Raffelt, Lect. Notes Phys. 741, 51 (2008)

    Article  ADS  Google Scholar 

  4. Changa, J.H., Essiga, R., McDermott, S.D., arXiv:1803.00993 (2018)

  5. M. Krcmar et al., Phy. Rev. D 64, 115016 (2001)

    Article  ADS  Google Scholar 

  6. K. Jacovcic et al., Rad. Phys. Chem. 71, 793 (2004)

    Article  ADS  Google Scholar 

  7. A.V. Derbin, S.V. Bakhlanov, A.I. Egorov et al., Phys. Lett. B 678, 181 (2009)

    Article  ADS  Google Scholar 

  8. M. Krčmar, Z. Krečak, M. Stičević, A. Ljubičić, D.A. Bradley, Phys. Lett. B 442, 38 (1998)

    Article  ADS  Google Scholar 

  9. T. Namba, Phys. Lett. B 645, 398 (2007)

    Article  ADS  Google Scholar 

  10. A.V. Derbina, A.I. Egorov, I.A. Mitropolsky, V.N. Muratova, D.A. Semenov, E.V. Unzhakov, Eur. Phys. J. C 62, 755 (2009)

    Article  ADS  Google Scholar 

  11. A.V. Derbin, V.N. Muratova, D.A. Semenov, E.V. Unzhakov, Phys. At. Nucl. 74, 596 (2011)

    Article  Google Scholar 

  12. Y.M. Gavrilyuk, A.N. Gangapshev, A.V. Derbin et al., Jetp Lett. 101, 664 (2015). https://doi.org/10.1134/S0021364015100069

    Article  ADS  Google Scholar 

  13. CAST collaboration et. al., J. Cosmol. Astropart. Phys., P12(2009)002

  14. J.A.B. Mates, G.C. Hilton, K.D. Irwin, L.R. Vale, K.W. Lehnert, Appl. Phys. Lett. 92, 023514 (2008)

    Article  ADS  Google Scholar 

  15. Y. Nakashima, F. Hirayama, S. Kohjiro, H. Yamamori, S. Nagasawa, A. Sato, N.Y. Yamasaki, K. Mitsuda, IEEE Trans. Appl. Supercond. 29, 2100705 (2019)

    Article  Google Scholar 

  16. J.A. Fleming, J. Dewar, Proc. R. Soc. Lond. 60, 81 (1896)

    Google Scholar 

  17. Y. Ishisaki, H. Kurabayashi, A. Hoshino, T. Ohashi, T. Yoshino, T. Hagihara, K. Mitsuda, K. Tanaka, J. Low Temp. Phys. 151, 131 (2008)

    Article  ADS  Google Scholar 

  18. Brookhaven National Laboratory Selected Cryogenic Data Notebook, BNL 10200-R, Volume I, Compiled and Edited by J.E. Jensen et al., (1980)

  19. H. Akamatsu, Y. Abe, K. Ishikawa, Y. Ishisaki, Y. Ezoe, T. Ohashi, Y. Takei, N.Y. Yamasaki, K. Mitsuda, R. Maeda, AIP Conf. Proc. 1185, 195 (2009). https://doi.org/10.1063/1.3292313

    Article  ADS  Google Scholar 

  20. H. Muramatsu, T. Hayashi, K. Maehisa, Y. Nakashima, K. Mitsuda, N.Y. Yamasaki, T. Hara, K. Maehata, IEEE Trans. Appl. Supercond. 27, 2815–2821 (2017). https://doi.org/10.1109/TASC.2017.2661738

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to S. Moriyama for stimulating discussion and his suggestions about solar axion searches. This work was supported by JSPS KAKENHI Grant Number 18H01244.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Konno.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konno, R., Maehisa, K., Mitsuda, K. et al. Development of TES Microcalorimeters with Solar-Axion Converter. J Low Temp Phys 199, 654–662 (2020). https://doi.org/10.1007/s10909-019-02257-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02257-9

Keywords

Navigation