Skip to main content

Advertisement

Log in

Recent Results for the ECHo Experiment

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The Electron Capture in \(^{163}\)Ho experiment, ECHo, is designed to investigate the electron neutrino mass in the sub-eV range by means of the analysis of the calorimetrically measured spectrum following the electron capture (EC) in \(^{163}\)Ho. Arrays of low-temperature metallic magnetic calorimeters (MMCs), read-out by microwave SQUID multiplexing, will be used in this experiment. With a first MMC prototype having the \(^{163}\)Ho source ion-implanted into the absorber, we performed the first high energy resolution measurement of the EC spectrum, which demonstrated the feasibility of such an experiment. In addition to the technological challenges for the development of MMC arrays, which preserve the single pixel performance in terms of energy resolution and bandwidth, the success of the experiment relies on the availability of large ultra-pure \(^{163}\)Ho samples, on the precise description of the expected spectrum, and on the identification and reduction of background. We present preliminary results obtained with standard MMCs developed for soft X-ray spectroscopy, maXs-20, where the \(^{163}\)Ho ion-implantation was performed using a high-purity \(^{163}\)Ho source produced by advanced chemical and mass separation. With these measurements, we aim at determining an upper limit for the background level due to source contamination and provide a refined description of the calorimetrically measured spectrum. We discuss the plan for a medium scale experiment, ECHo-1k, in which about \(1000\,\mathrm {Bq}\) of high-purity \(^{163}\)Ho will be ion-implanted into detector arrays. With one year of measuring time, we will be able to achieve a sensitivity on the electron neutrino mass below 20 eV/c\(^2\) (90 \(\%\) C.L.), improving the present limit by more than one order of magnitude. This experiment will guide the necessary developments to reach the sub-eV sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Phase-imaging based on ion-cyclotron-resonance.

References

  1. KATRIN, Design Report (2004), FZKA7090

  2. A. De Rujula, M. Lusignoli, Phys. Lett. B 118, 429 (1982)

    Article  ADS  Google Scholar 

  3. L. Gastaldo et al., in preparation (2015)

  4. L. Gastaldo et al., J. Low Temp. Phys. 176(5–6), 876 (2014)

    Article  ADS  Google Scholar 

  5. A. Fleischmann et al., AIP Conf. Proc. 1185, 571 (2009)

    Article  ADS  Google Scholar 

  6. P. C.-O. Ranitzsch et al., in preparation (2015)

  7. B. Alpert et al., Eur. Phys. J. C 75, 112 (2015). arXiv:1412.5060 [3]

  8. NuMECS, http://p25ext.lanl.gov/~kunde/NuMECS/FSNu_Position_NUMECS_Executive

  9. S. Eliseev et al., Phys. Rev. Lett. 115, 062501 (2015)

    Article  ADS  Google Scholar 

  10. M. Block et al., Eur. Phys. J. D 45, 39 (2007)

    Article  ADS  Google Scholar 

  11. F. Schneider et al., Eur. Phys. J. A 51, 89 (2015)

    Article  ADS  Google Scholar 

  12. S. Eliseev et al., Appl. Phys. B 114, 107–128 (2014)

    Article  ADS  Google Scholar 

  13. P.C.-O. Ranitzsch et al., J. Low Temp. Phys. 167, 1004 (2012)

    Article  ADS  Google Scholar 

  14. R.G.H. Robertson, Phys. Rev. C 91, 035504 (2015). arXiv:1411.2906 [1]

  15. A. Fäßler, Phys. Rev. C. 91 (2015) 045505, arXiv:1501.04338 [2]

  16. A. Fäßler et al., Phys. Rev. C 91 (2015) 064302, arXiv:1503.0228 [2]

  17. A. De Rúujula and M. Lusignoli (2015), arXiv:1510.05462

  18. C. Enss. Topics in Applied Physics 99 (2005)

  19. A. Fleischmann et al., in preparation (2015)

  20. J.-P. Porst et al., J. Low Temp. Phys. 176, 617–623 (2014)

    Article  ADS  Google Scholar 

  21. C. Pies et al., J. Low Temp. Phys. 167, 269 (2012)

    Article  ADS  Google Scholar 

  22. L. Gastaldo et al., Nucl. Inst. Meth. A 711, 150 (2013)

    Article  ADS  Google Scholar 

  23. E. Kugler, Hyperfine Interact. 129, 23 (2000)

    Article  ADS  Google Scholar 

  24. H. Dorrer et al., in preparation (2015)

  25. M. Maiti et al., J. Rad. Nucl. Chem. (2015)

  26. F. Schneider et al., submitted to NIMB (2015)

  27. C. Geppert, K. Wendt, Pramana J. Phys. 75, 1057 (2010)

    Article  ADS  Google Scholar 

  28. J. Repp et al., Appl. Phys. B. 107, 983 (2012)

    Article  ADS  Google Scholar 

  29. C. Roux et al., Appl. Phys. B. 107, 997 (2012)

    Article  ADS  Google Scholar 

  30. J.A.B. Mates et al., Appl. Phys. Lett. 92(2), 023514 (2008)

    Article  ADS  Google Scholar 

  31. S. Kempf et al., J. Low Temp. Phys. 176(3–4), 426 (2014)

    Article  ADS  Google Scholar 

  32. P.T. Springer et al., Phys. Rev. A 35, 679 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was performed in the framework of the DFG Research Unit FOR 2202 “Neutrino Mass Determination by Electron Capture in \(^{163}\)Ho, ECHo” (funding under DU 1334/1-1, GA 2219/2-1, EW 299/7-1, JO 451/1-1, BL 981/5-1, EW 299/8-1) and was supported by the Max Planck Society, by the IMPRS-PTFS and by the EU (ERC Grant No. 290870-MEFUCO). H. D. acknowledges support by the Stufe 1 funding of the Johannes Gutenberg University Mainz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hassel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassel, C., Blaum, K., Goodacre, T.D. et al. Recent Results for the ECHo Experiment. J Low Temp Phys 184, 910–921 (2016). https://doi.org/10.1007/s10909-016-1541-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1541-9

Keywords

Navigation