Skip to main content
Log in

Superfluid Phases of 3He in a Periodic Confined Geometry

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Predictions and discoveries of new phases of superfluid 3He in confined geometries, as well as novel topological excitations confined to surfaces and edges of near a bounding surface of 3He, are driving the fields of superfluid 3He infused into porous media, as well as the fabrication of sub-micron to nano-scale devices for controlled studies of quantum fluids. In this report we consider superfluid 3He confined in a periodic geometry, specifically a two-dimensional lattice of square, sub-micron-scale boundaries (“posts”) with translational invariance in the third dimension. The equilibrium phase(s) are inhomogeneous and depend on the microscopic boundary conditions imposed by a periodic array of posts. We present results for the order parameter and phase diagram based on strong pair breaking at the boundaries. The ordered phases are obtained by numerically minimizing the Ginzburg-Landau free energy functional. We report results for the weak-coupling limit, appropriate at ambient pressure, as a function of temperature T, lattice spacing L, and post edge dimension, d. For all d in which a superfluid transition occurs, we find a transition from the normal state to a periodic, inhomogeneous “polar” phase with \(T_{c_{1}} < T_{c}\) for bulk superfluid 3He. For fixed lattice spacing, L, there is a critical post dimension, d c , above which only the periodic polar phase is stable. For d<d c we find a second, low-temperature phase onsetting at \(T_{c_{2}} < T_{c_{1}}\) from the polar phase to a periodic “B-like” phase. The low temperature phase is inhomogeneous, anisotropic and preserves time-reversal symmetry, but unlike the bulk B-phase has only \(\mathtt{D}_{\text{4h}}^{\text{L}+\text{S}}\) point symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The in-plane chiral phase with period 2L is a periodic version of the texture obtained by Surovtsev and Fomin [21] for a uniform distribution of rod-like impurities embedded in 3He-A.

References

  1. V. Ambegaokar, P. de Gennes, D. Rainer, Phys. Rev. A 9, 2676 (1975)

    Article  ADS  Google Scholar 

  2. D. Rainer, M. Vuorio, J. Phys. C, Solid State Phys. 10, 3093 (1977)

    Article  ADS  Google Scholar 

  3. P. de Gennes, D. Rainer, Phys. Lett. A 46, 429 (1974)

    Article  ADS  Google Scholar 

  4. N.D. Mermin, T.-L. Ho, Phys. Rev. Lett. 36, 594 (1976)

    Article  ADS  Google Scholar 

  5. P.M. Walmsley, A.I. Golov, Phys. Rev. Lett. 109, 215301 (2012)

    Article  ADS  Google Scholar 

  6. T. Kunimatsu, H. Nema, R. Ishiguro, M. Kubota, T. Takagi, Y. Sasaki, O. Ishikawa, J. Low Temp. Phys. 171, 280 (2013)

    Article  ADS  Google Scholar 

  7. L.J. Buchholtz, G. Zwicknagl, Phys. Rev. B 23, 5788 (1981)

    Article  ADS  Google Scholar 

  8. Y. Nagato, M. Yamamoto, K. Nagai, J. Low Temp. Phys. 110, 1135 (1998)

    Article  ADS  Google Scholar 

  9. A. Vorontsov, J.A. Sauls, Phys. Rev. B 68, 064508 (2003)

    Article  ADS  Google Scholar 

  10. L.H. Kjäldman, J. Kurkijärvi, D. Rainer, J. Low Temp. Phys. 33, 577 (1978)

    Article  ADS  Google Scholar 

  11. A.B. Vorontsov, J.A. Sauls, Phys. Rev. Lett. 98, 045301 (2007)

    Article  ADS  Google Scholar 

  12. M. Freeman, R.S. Germain, E.V. Thuneberg, R.C. Richardson, Phys. Rev. Lett. 60, 596 (1988)

    Article  ADS  Google Scholar 

  13. J. Xu, B.C. Crooker, Phys. Rev. Lett. 65, 3005 (1990)

    Article  ADS  Google Scholar 

  14. A. Schechter, R.W. Simmonds, R.E. Packard, J.C. Davis, Nature 396, 554 (1998)

    Article  ADS  Google Scholar 

  15. L.V. Levitin, R.G. Bennett, A. Casey, B. Cowan, J. Saunders, D. Drung, T. Schurig, J.M. Parpia, Science 340, 6 (2013)

    Article  Google Scholar 

  16. M. Gonzalez, P. Zheng, E. Garcell, Y. Lee, H.B. Chan, Rev. Sci. Instrum. 84, 025003 (2013)

    Article  ADS  Google Scholar 

  17. N. Zhelev, R. Bennett, R. Ilic, J. Parpia, L. Levitin, A. Casey, J. Saunders, Bull. Am. Phys. Soc. 58 (2013)

  18. D. Rainer, J.W. Serene, Phys. Rev. B 13, 4745 (1976)

    Article  ADS  Google Scholar 

  19. D. Vollhardt, P. Wölfle, The Superfluid Phases of 3He (Taylor & Francis, New York, 1990)

    Google Scholar 

  20. J.A. Sauls, Phys. Rev. B 84, 214509 (2011)

    Article  ADS  Google Scholar 

  21. E.V. Surovtsev, I.A. Fomin, J. Low Temp. Phys. 150, 487 (2008)

    Article  ADS  Google Scholar 

  22. O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, The Finite Element Method: Its Basis and Fundamentals (Butterworth-Heinemann, Stoneham, 2005)

    Google Scholar 

  23. J.R. Shewchuk, in Applied Computational Geometry: Towards Geometric Engineering, ed. by M.C. Lin, D. Manocha. Lecture Notes in Computer Science, vol. 1148 (Springer, Berlin, 1996), pp. 203–222

    Chapter  Google Scholar 

  24. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970)

    Google Scholar 

  25. W.W. Hager, H. Zhang, ACM Trans. Math. Softw. 32, 113 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Science Foundation (Grant DMR-1106315). We thank David Ferguson for many discussions and critique during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Wiman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiman, J.J., Sauls, J.A. Superfluid Phases of 3He in a Periodic Confined Geometry. J Low Temp Phys 175, 17–30 (2014). https://doi.org/10.1007/s10909-013-0924-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-0924-4

Keywords

Navigation