Skip to main content
Log in

Superconductivity of Bi Confined in an Opal Host

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Superconductivity is observed in a composite of rhombohedral crystalline bismuth nanoparticles imbedded in an insulating porous opal host via electrical transport and AC magnetic susceptibility. The onset of superconductivity in this system occurs in two steps, with upper transition temperature T c,U =4.1 K and lower transition temperature of T c,L =0.7 K, which we attribute to the granular nature of the composite. The transition at T c,U is observed to split into two transitions with the application of a magnetic field, and these have upper critical fields extrapolated to T=0 K of H c2,1(0)=0.7 T and H c2,2(0)=1.0 T, corresponding to coherence lengths of ξ 1(0)=21 nm and ξ 2(0)=18 nm, respectively. We suggest that because of the lack of bulk-like states in the Bi nanoparticles due to confinement effects, superconductivity originates from surface states arising from Rashba spin-orbit scattering at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V.S. Edelman, Adv. Phys. 25, 555 (1976)

    Article  ADS  Google Scholar 

  2. Y.M. Lin, X.Z. Sun, M.S. Dresselhaus, Phys. Rev. B 62, 4610 (2000)

    Article  ADS  Google Scholar 

  3. T.E. Huber, A. Nikolaeva, D. Gitsu, L. Konopko, C.A. Foss, M.J. Graf, Appl. Phys. Lett. 84, 1326 (2004)

    Article  ADS  Google Scholar 

  4. N.B. Brandt, N.I. Ginzburg, Contemp. Phys. 10, 355 (1969)

    Article  ADS  Google Scholar 

  5. W. Buckel, R. Hilsch, Z. Phys. 138, 109 (1954)

    Article  ADS  Google Scholar 

  6. B. Weitzel, H. Micklitz, Phys. Rev. Lett. 66, 385 (1991)

    Article  ADS  Google Scholar 

  7. M. Tian, J. Wang, N. Kumar, T. Han, Y. Kobayashi, Y. Liu, T.E. Mallouk, M.H.W. Chan, Nano Lett. 6, 2773 (2006)

    Article  ADS  Google Scholar 

  8. M. Tian, N. Kumar, M.H.W. Chan, T.E. Mallouk, Phys. Rev. B 78, 045417 (2008)

    Article  ADS  Google Scholar 

  9. Z. Ye, H. Zhang, H. Liu, W. Wu, Z. Luo, Nanotechnology 19, 085709 (2008)

    Article  ADS  Google Scholar 

  10. M. Tian, J. Wang, Q. Zhang, N. Kumar, T.E. Mallouk, M.H.W. Chan, Nano Lett. 9, 3196 (2009)

    Article  ADS  Google Scholar 

  11. A.A. Zakhidov, R.H. Baughman, Z. Iqbal, C.X. Cui, I. Khayrullin, S.O. Dantas, I. Marti, V.G. Ralchenko, Science 282, 897 (1998)

    Article  ADS  Google Scholar 

  12. K. Yoshino, S.B. Lee, S. Tatsuhara, Y. Kawagishi, M. Ozaki, A.A. Zakhidov, Appl. Phys. Lett. 73, 3506 (1998)

    Article  ADS  Google Scholar 

  13. A.E. Aliev, S.B. Lee, A.A. Zakhidov, R.H. Baughman, Physica C 453, 15 (2007)

    Article  ADS  Google Scholar 

  14. R.J. Soulen, J.F. Schooley, G.A. Evans, Rev. Sci. Instrum. 44, 1537 (1973)

    Article  ADS  Google Scholar 

  15. E.H. Sondheimer, Adv. Phys. 1, 2 (1952)

    Article  ADS  Google Scholar 

  16. T.E. Huber, A. Adeyeye, A. Nikolaeva, L. Konopko, R.C. Johnson, M.J. Graf, Phys. Rev. B 83, 235414 (2011)

    Article  ADS  Google Scholar 

  17. B. Abeles, Phys. Rev. B 15, 2828 (1977)

    Article  ADS  Google Scholar 

  18. I. Felner, E. Galstyan, B. Lorenz, D. Cao, Y.S. Wang, Y.Y. Xue, C.W. Chu, Phys. Rev. B 67, 134506 (2003)

    Article  ADS  Google Scholar 

  19. E.V. Charnaya, C. Tien, K.J. Lin, C.S. Wur, Y.A. Kumzerov, Phys. Rev. B 58, 467 (1998)

    Article  ADS  Google Scholar 

  20. T.E. Huber, M.J. Graf, Phys. Rev. B 60, 16880 (1999) (see for example)

    Article  ADS  Google Scholar 

  21. M. Tinkham, Introduction to Superconductivity, 2nd edn. (Dover/McGraw-Hill, New York, 1996), p. 297

    Google Scholar 

  22. R. Denton, B. Mühlschlegel, D.J. Scalapino, Phys. Rev. B 7, 3589 (1973)

    Article  ADS  Google Scholar 

  23. P. Zolotavin, P. Guyot-Sionnest, ACS Nano 4, 5599 (2010)

    Article  Google Scholar 

  24. Y. Liu, K.A. Mcgreer, B. Nease, D.B. Haviland, G. Martinez, J.W. Halley, A.M. Goldman, Phys. Rev. Lett. 67, 2068 (1991)

    Article  ADS  Google Scholar 

  25. K.A. Parendo, K.H.S.B. Tan, A.M. Goldman, Phys. Rev. B 76, 100508 (2007)

    Article  ADS  Google Scholar 

  26. Y. Lin, A.M. Goldman, Phys. Rev. B 82, 214511 (2010)

    Article  ADS  Google Scholar 

  27. G. Sambandamurthy, K. Das Gupta, N. Chandrasekhar, Phys. Rev. B 64, 014506 (2001)

    Article  ADS  Google Scholar 

  28. Ph. Hofmann, Prog. Surf. Sci. 81, 191 (2006)

    Article  ADS  Google Scholar 

  29. O. Dimitrova, M.V. Feigel’man, Phys. Rev. B 76, 014522 (2007) (see for example)

    Article  ADS  Google Scholar 

  30. V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven, Science 336, 6084 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. A. Zakhidov for generously providing the sample studied. We also acknowledge technical assistance provided by Mr. Tom Hogan. This work was supported in part by National Science Foundation grant REU DMR-0649169 (MDN). T.E.H. acknowledges support the National Science Foundation under Grant No. NSF-DMR-0839955 and by the U.S. Army Research Office Materials Science Division under Grant No. W911NF-09-1-05-29.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Graf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, R.C., Nieskoski, M.D., Disseler, S.M. et al. Superconductivity of Bi Confined in an Opal Host. J Low Temp Phys 170, 205–215 (2013). https://doi.org/10.1007/s10909-012-0768-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0768-3

Keywords

Navigation