Skip to main content

Advertisement

Log in

Solid-Phase Synthesis of Non-metal (S, N)-Doped Tin Oxide Nanopowders at Room Temperature and its Photodegradation Properties for Wastewater of Biomass Treatment

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Tin oxide and sulfur, nitrogen-doped tin oxide nano-powder catalysts were prepared by a solid phase reaction at room temperature, using the sodium p-toluene sulfonate (STS) surfactant as template. Theoretical calculation of the dehydration reaction energy of tin hydroxide was performed with the framework of DFT and their structures were characterized. And the UV-light degradation performance and mechanism used for the biomass wastewater were discussed, as well as, its COD and NH3-N value. The results show that the large gap of the reaction energy between intramolecular dehydration (Er = 2.81 eV) and intermolecular dehydration (Er = 5.77 eV) for tin hydroxide causes the presence of amorphous SnO2 and metastable tin hydroxide at 450 °C. The entry of S and N into the (110) crystal plane of SnO2 reduces its energy band gap width, exhibiting the photocatalytic degradation rate (98.9%) of S + N-SnO2-STS sample for the rice straw powder treatment wastewater (RSPTW) irradiated by UV-light for 8 h. The excellent degradation capacity of RSPTW mainly comes from the hydroxyl radicals (·OH) and superoxygen radicals (·O2) produced by the rich hydroxyl on the surface of S + N-SnO2-STS due to the regulatory effect of STS and lower calcined temperature. The sewage discharge of photodegraded RSPTW complies with Chinese National Level II Standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Z. Ma, Li. Ye, Y. Wua, T. Zhao, Preparation and photocatalytic performance of B, N-SnO2/TiO2 photocatalyst. Acta Chim. Sinica 79, 1173–1179 (2021)

    Article  CAS  Google Scholar 

  2. L. Shaoyou, C. Yuandao, T. Yucai, W. Feifei, F. Qingge, Weak interaction of Ni-doped SnO2 powder materials with sodium benzenesulfonate homologues as templates. J. Inorg. Organomet. Polym Mater. (2020). https://doi.org/10.1007/s10904-020-01451-7

    Article  Google Scholar 

  3. E. Zampiceni, E. Bontempi, G. Sberveglieri, L.E. Depero, Mo influence on SnO2 thin films properties. Thin Solid Films. 418(1), 16–20 (2002)

    Article  CAS  Google Scholar 

  4. Xu. Keng, T. Shouqin, Z. Jia, Y. Yong, Yu. Shi Jing, Y.C. Ting, High selectivity of sulfur-doped SnO2 in NO2 detection at lower operating temperatures. Nanoscale 10(44), 20761–20771 (2018)

    Article  Google Scholar 

  5. A.M. Al-Hamdi, M. Sillanpää, J. Dutta, Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation. J. Alloy Compd. 618, 366–371 (2015)

    Article  CAS  Google Scholar 

  6. Y.-B. Lu, Z.C. Ling, W.-Y. Cong, P. Zhang, Magnetism tuned by the charge states of defects in bulk C-doped SnO2 materials. Phys. Chem. Chem. Phys. 17(39), 26429–26434 (2015)

    Article  PubMed  CAS  Google Scholar 

  7. L. Shaoyou, C. Yuandao, Ou. Zuo Chenggang, Z.W. Lihui, F. Qingge, Solid-phase synthesis and photocatalytic property of sulfur and nickel doped tin oxide powder materials by isomeric surfactant as template. J. Inorg. Organomet. Polym Mater. (2019). https://doi.org/10.1007/s10904-019-01204-1

    Article  Google Scholar 

  8. Y. Chen, Y. Jiang, B. Chen, F. Ye, H. Duan, H. Cui, Facile fabrication of N-doped carbon quantum dots modified SnO2 composites for improved visible light photocatalytic activity. Vacuum 191, 110371–110380 (2021)

    Article  CAS  Google Scholar 

  9. A. Nouri, A. Fakhri, Synthesis, characterization and photocatalytic applications of N-, S-, and C-doped SnO2 nanoparticles under ultraviolet (UV) light illumination. Spectrochim. Acta Part A 138, 563–568 (2015)

    Article  CAS  Google Scholar 

  10. L. Chia-Chang, C. Yu-Ju Chiang, Preparation of coupled ZnO/SnO2 photocatalysts using a rotating packed bed. Chem. Eng. J. 181182, 196–205 (2012)

    Google Scholar 

  11. A. Wong, A.M. Santos, F.C. da Fonesca Alves, F.C. Vicentini, O. Fatibello-Filho, M. Sotomayor, Simultaneous determination of direct yellow 50, tryptophan, carbendazim, and caffeine in environmental and biological fluidsamples using graphite pencil electrode modified with palladium nanoparticles. Talanta 22, 539 (2021)

    Google Scholar 

  12. H. Liu, M. Chen, H. Zhang, B. Wang, J. Peng, G. Liu, One-Step synthesis of hierarchical flower-like SnO2/BiOCOOH microspheres with enhanced light response for the removal of pollutants. Langmuir 36(30), 9005–9013 (2020)

    Article  PubMed  CAS  Google Scholar 

  13. B.K. Sahu, R.N. Juine, M. Sahoo, R. Kumar, A. Das (2021) Interface of with quantum dots as an efficient visible-light photocatalyst. Chemosphere 276, 130142–130150 (2021)

  14. A. Bafekry, M. Faraji, M.M. Fadlallah, A. Bagheri Khatibani, A. Abdolahzadeh Ziabari, M. Ghergherehchi, S. Nedaei, S. Farjami Shayesteh, D. Gogova, Tunable electronic and magnetic properties of MoSi2N4 monolayer via vacancy defects, atomic adsorption and atomic doping. Appl. Surf. Sci. 559, 149862–149868 (2021)

    Article  CAS  Google Scholar 

  15. A. Bafekry, M. Faraji, N.N. Hieu, A. Bagheri Khatibani, M. Ghergherehchi, Tunable electronic properties of porous graphitic carbon nitride (C6N7) monolayer by atomic doping and embedding: A first-principle study. Appl. Surf. Sci. 583, 152270–152278 (2022)

    Article  CAS  Google Scholar 

  16. R.R. Bhosale, A. Kumar, P. Sutar, Thermodynamic analysis of solar driven SnO2/SnO based thermochemical water splitting cycle. Energy Convers. Manag. 135, 226–235 (2017)

    Article  CAS  Google Scholar 

  17. D.G. Bekas, K. Tsirka, D. Baltzis, A.S. Paipetis, Self-healing materials: a review of advances in materials, evaluation, characterization and monitoring techniques. Composite B 87, 92–119 (2016)

    Article  CAS  Google Scholar 

  18. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  PubMed  CAS  Google Scholar 

  19. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized Eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990)

    Article  CAS  Google Scholar 

  20. M. Methfessel, A.T. Paxton, High-precision sampling for brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989)

    Article  CAS  Google Scholar 

  21. S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi. PWSCF and PHONON: Plane-Wave Pseudo-Potential Codes, (2001) http://www.quantum-espresso.org/

  22. Y.H. Duan, Electronic properties and stabilities of bulk and lowindex surfaces of SnO in comparison with SnO2: a frst-principles density functional approach with an empirical correction of vander Waals interactions. Phys. Rev. B 77, 45332 (2008)

    Article  CAS  Google Scholar 

  23. H. Liu, A. Wang, Q. Sun, T.T. Wang, H.P. Zeng, Cu nanoparticles/fuorine-doped tin oxide (FTO) nanocomposites for photocatalytic H2 evolution under visible light irradiation. Catalysts 7, 385–398 (2017)

    Article  CAS  Google Scholar 

  24. L. Shao-you, Solid state synthesis of sulfur doped tin oxide nanoparticles and visible-light driven photocatalytic degradation of paraquat. Chin J Inorg Chem 31(4), 649–658 (2015)

    Google Scholar 

  25. H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J. Phys. Chem. B 107, 5483–5486 (2003)

    Article  CAS  Google Scholar 

  26. N. Patel, R. Jaiswal, T. Warang, G. Scarduelli, A. Dashora, B. Ahuja, D. Kothari, A. Miotello, Efficient photocatalytic degradation of organic water pollutants using V-N-codoped TiO2 thin films. Appl. Catal. B 150–151, 74–81 (2014)

    Article  CAS  Google Scholar 

  27. T.J. Wang, H. Zhang, G. Zhang, T. Yuan, Computer modeling of satellite peak in tin profile of float glass. J. Non-Cryst Solids 271(1–2), 126–36 (2000)

    Article  CAS  Google Scholar 

  28. B. Vincent Crist. Handbook of Monochromatic XPS Spectra, The Elements of Native Oxides, Wiley Press, 1999

  29. S. In, A. Orlov, R. Berg, F. Garcta, S. Pedrosa-Jimenez, M. Tikhov, D. Wright, R. Lambert, Effective visible light-activated B-doped and B, N-codoped Tio2 photocatalysts. J. Am. Chem. Soc. 129, 13790–13791 (2007)

    Article  PubMed  CAS  Google Scholar 

  30. K. Ahmadi, A.A. Ziabari, K. Mirabbaszadeh, S. Ahmadi, Synthesis of TiO2 nanotube array thin films and determination of the optical constants using transmittance data. Superlattices Microstruct. 77, 25–34 (2015)

    Article  CAS  Google Scholar 

  31. M. Batzill, U. Diebold, Prog. The surface and materials science of tin oxide. Surf. Sci. 79, 47–154 (2005)

  32. Mengkai L, Solid-State Chemistry (in Chinese), Shandong University Press, 1996, 313

  33. P.V. Viet, C.M. Thi, L.V. Hieu, The high photocatalytic activity of SnO2 nanoparticles synthesized by hydrothermal method. J. Nanomater. (2016). https://doi.org/10.1155/2016/4231046

    Article  Google Scholar 

  34. B.K. Sahu, R.N. Juine, M. Sahoo, R. Kumar, A. Das, Interface of GO with SnO2 quantum dots as an efficient visible-light photocatalyst. Chemosphere 276, 130142–130150 (2021)

    Article  PubMed  CAS  Google Scholar 

  35. He. Zhongbing, L. Shaoyou, Y. Hongyun, M. Zongyi, N. Xin, Solid state synthesis of sulfur doped tin oxide nanoparticles and visible-light driven photocatalytic degradation of paraquat. Chin J Inorg Chem 31(4), 649–658 (2015)

    Google Scholar 

  36. P. Chen, F. Wang, Z. Chen, Q. Zhang, Y. Su, L. Shen, K. Yao, Y. Liu, Z. Cai, W. Lv, G. Liu, Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst: the significant roles of reactive oxygen species. Appl. Catal. B 204, 250–259 (2017)

    Article  CAS  Google Scholar 

  37. A.F. Khan, A. Mehmood, M. Aslam et al., Characteristics of electron beam evaporated nanocrystalline SnO2 thin films annealed in air. Appl. Surf. Sci. 256(7), 2252–2258 (2010)

    Article  CAS  Google Scholar 

  38. D. Amalric-Popescu, F. Bozon-Verduraz, Infrared studies on SnO2 and Pd/SnO2. Catal. Today 70, 139–154 (2001)

    Article  CAS  Google Scholar 

  39. K. Li, Ye. He, J. Li, J. Sheng, Y. Sun, J. Li, F. Dong, Identification of deactivation-resistant origin of In(OH)3 for efficient anddurable photodegradation of benzene, toluene and their mixtures. J. Hazard. Mater. 416, 126208–126217 (2021)

    Article  PubMed  CAS  Google Scholar 

  40. Z. Sabouri, A. Akbari, H.A. Hosseini, A. Hashemzadeh, M. Darroudi, Bio-based synthesized NiO nanoparticles and evaluation of their cellular toxicity and wastewater treatment effects. J. Mol. Struct. 1191, 101–109 (2019)

    Article  CAS  Google Scholar 

  41. A. Kar, J. Olszowka, S. Sain, S.R.I. Sloman, O. Montes, A. Fernandez, S.K. Pradhan, A.E.H. Wheatley, Morphological effects on the photocatalytic properties of SnO2 nanostructures. J. Alloy Compd. 810, 151718 (2019)

    Article  CAS  Google Scholar 

  42. J. Khanderi, L. Shi, A. Rothenberger, Hydrolysis of bis(dimethylamido)tin to tin (II) oxyhydroxide and its selective transformation into tin (II) or tin (IV) oxide. Inorg. Chim. Acta 427, 27–32 (2015)

    Article  CAS  Google Scholar 

  43. Y. Ren, L.A. Gao, From three-dimensional flower-like alpha-Ni(OH)2 nanostructures to hierarchical porous NiO nanoflowers: microwave-assisted fabrication and supercapacitor properties. J. Am. Ceram. Soc. 93(11), 3560–3564 (2010)

    Article  CAS  Google Scholar 

  44. H.B. Li, M.H. Yu, F.X. Wang et al., Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 4, 1894–1896 (2013)

    Article  PubMed  CAS  Google Scholar 

  45. D.A. Giarola, P.R. Catarini da Silva, A. Urbano, F.M. de Oliveira, C.R. Texeira Tarley, L.H. Dall’Antonia, Surfactant effect on electrochemical-induced synthesis of α-Ni (OH). J Solid State Electrochem. 18(2), 497–504 (2014)

    Article  CAS  Google Scholar 

  46. A.H. Kuptsov, G.N. Zhizhin, Handbook of Fourier transform Raman and infrared spectra of polymers (Elsevier, New York, 1998)

    Google Scholar 

  47. M. Okazaki, T. Shiga, S. Sakata, R. Konaka, K. Toriyama, Isotope enrichment by electron spin resonance transitions of the intermediate radical pair. J. Phys. Chem. B 92(6), 1402–1404 (1988)

    Article  CAS  Google Scholar 

  48. Y. Yang, Y. Guo, F. Liu, X. Yuan, Y. Guo, S. Zhang, W. Guo, M. Huo, Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst. Appl. Catal. B 142–143, 828–837 (2013)

    Article  CAS  Google Scholar 

  49. C. Liu, Y. Zhang, F. Dong, A.H. Reshak, L. Ye, N. Pinna, C. Zeng, T. Zhang, H. Huang, Chlorine intercalation in graphitic carbon nitride for efficient photocatalysis. Appl. Catal. B 203, 465–474 (2017)

    Article  CAS  Google Scholar 

  50. S. Fang, Y. Xia, K. Lv, Q. Li, J. Sun, M. Li, Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4. Appl. Catal. B 185, 225–232 (2016)

    Article  CAS  Google Scholar 

  51. Zhang J., Tian B., Wang L., Xing M., Lei J. Roles and properties of cocatalysts in semiconductor-based materials for efficient CO2 photoreduction. In: Photocatalysis. Lecture notes in chemistry. Springer, Singapore, 100, 275–305 (2018)

  52. Wang J. Concise Course of Physical Organic Chemistry (in Chinese), Peking University Press, 172 (2013)

Download references

Acknowledgements

This project was supported by Hunan Province Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, and Yingde City Originality New Materials Co., Ltd

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-You Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SY., Wang, Q., Ou, LH. et al. Solid-Phase Synthesis of Non-metal (S, N)-Doped Tin Oxide Nanopowders at Room Temperature and its Photodegradation Properties for Wastewater of Biomass Treatment. J Inorg Organomet Polym 32, 2748–2762 (2022). https://doi.org/10.1007/s10904-022-02296-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02296-y

Keywords

Navigation