Skip to main content
Log in

Synthesis, Characterization and Antimicrobial Activity of Copper-Metal Organic Framework (Cu-MOF) and Its Modification by Melamine

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Copper-Metal organic framework (Cu-MOF) and melamine/Cu-MOF (MCu-MOF) samples were prepared by the hydrothermal process. The produced powder was dried and characterized by using the FTIR, X-ray techniques. The thermal-gravimetry (TG) analysis was performed to detect the thermal stability of the product. On other hand, the morphology and the surface area of this powder were carried. The bioactivity of the powder was carried by measuring the inhibition zone diameter around samples in (mm). The results of characterization showed that on the IR spectra a series of absorption peaks at 970, 1500 and 1640 cm−1 were appeared which characterized the formation of Cu-MOF, while an addition peaks were observed at 3121, 3324, 3415 and 3467 cm−1 and attributed to the incorporation of melamine into Cu-MOF. X-ray patterns of the prepared samples show sharp peaks at 7.4 and 8.5 specified to Cu-MOF. The intensity of these peaks increases by adding melamine which indicate the improving the crystanility. Moreover two peaks at 26, 30attributed to the incorporate melamine in the Cu-MOF. The surface area of Cu-MOF is equal to 1350 m2 g−1while increase to 1410  m2 g−1 by incorporates melamine into the Cu-MOF. The thermal behavior (TG) of the Cu-MOF showed three sequence stages attributed to the moisture evaporation, degradation of the Cu-MOF and forming the Cu–O as end product respectively. For melamine incorporated to Cu-MOF (MCu-MOF), the TG profile split the main degradation into two parts resulting from the presence of melamine. To study the morphology of these samples by both FESEM and HRTEM were examined. The bioactivities of the both samples were tested against microbial strains. The results showed that the Cu-MOF and MCu-MOF have insignificant antimicrobial activity against gram positive of bacteria and Fungi. While for gram negative of bacteria it is observed a considerable effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Ding, X. Liao, Q. Dong, X. Xuan, S. Chen, X. Ye, X.D. Liu, Predictive modeling of microbial single cells: A review. Crit. Rev. Food Sci. Nutr. 58(5), 711–725 (2018). https://doi.org/10.1080/10408398.2016.1217193

    Article  CAS  PubMed  Google Scholar 

  2. B. Hamandi, S. Husain, A. Humar, E. Papadimitropoulos, Impact of infectious disease consultation on the clinical and economic outcomes of solid organ transplant recipients admitted for infectious complications. Clin. Infect. Dis. 59(8), 1074–1082 (2014). https://doi.org/10.1093/cid/ciu522

    Article  PubMed  Google Scholar 

  3. S. Kargozar, M. Montazerian, S. Hamzehlou, H. Kim, F. Baino, Mesoporous bioactive glasses: Promising platforms for antibacterial strategies. Acta Biomater. 81, 1–19 (2018). https://doi.org/10.1016/j.actbio.2018.09.052

    Article  CAS  PubMed  Google Scholar 

  4. X. Liao, P. Cullen, D. Liu, A. Muhammad, S. Chen, X. Ye, T. Ding, Combating Staphylococcus aureus and its methicillin resistance gene (mecA) with cold plasma. Sci. Total Environ. 645, 1287–1295 (2018). https://doi.org/10.1016/j.scitotenv.2018.07.190

    Article  CAS  PubMed  Google Scholar 

  5. X. Liao, Y. Ma, E. Daliri, S. Koseki, S. Wei, D. Liu, T. Ding, Interplay of antibiotic resistance and food-associated stress tolerance in foodborne pathogens. Trends Food Sci. Technol. 95, 97–106 (2020). https://doi.org/10.1016/j.tifs.2019.11.006

    Article  CAS  Google Scholar 

  6. M. Shen, N. Duan, S. Wu, Y. Zou, Z. Wang, Polydimethylsiloxane gold nanoparticle composite film as structure for aptamerbased detection of Vibrio parahaemolyticus by surface-enhanced Raman spectroscopy. Food Anal. Methods 12(2), 595–603 (2019). https://doi.org/10.1007/s12161-018-1389-5

    Article  Google Scholar 

  7. J. Liu, K. Chamakura, R. Perez-Ballestero, S. Bashir, Historical overview of the first two waves of bactericidal agents and development of the third wave of potent disinfectants, in Nanomaterials for biomedicine, vol 1119 ed. by R. Nagarajan (American Chemical Society, Washington, DC, 2012) pp. 129–154

    Chapter  Google Scholar 

  8. K. Ong, Y. Cheow, S. Lee, The role of reactive oxygen species in the antimicrobial activity of pyochelin. J. Adv. Res. 8(4), 393–398 (2017). https://doi.org/10.1016/j.jare.2017.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. F. Vatansever, W. de Melo, P. Avci, D. Vecchio, M. Sadasivam, A. Gupta, M. Hamblin, Antimicrobial strategies centered around reactive oxygen species-bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 37(6), 955–989 (2013). https://doi.org/10.1111/1574-6976.12026

    Article  CAS  PubMed  Google Scholar 

  10. J. Li, J. Sculley, H. Zhou, Metal-organic frameworks for separations. Chem. Rev. 112(2), 869–932 (2012). https://doi.org/10.1021/cr200190s

    Article  CAS  PubMed  Google Scholar 

  11. S. Meek, J. Greathouse, M. Allendorf, Metal organic frameworks: a rapidly growing class of versatile nano-porous materials. Adv. Mater. 23(2), 249–267 (2011). https://doi.org/10.1002/adma.201002854

    Article  CAS  PubMed  Google Scholar 

  12. X. Unamuno, E. Imbuluzqueta, F. Salles, P. Horcajada, M. Blanco-Prieto, Biocompatible porous metal-organic framework nanoparticles based on Fe or Zr for gentamicin vectorization. Eur. J. Pharm. Biopharm. 132, 11–18 (2018). https://doi.org/10.1016/j.ejpb.2018.08.013

    Article  CAS  PubMed  Google Scholar 

  13. A. Taher, D. Kim, I. Lee, Highly efficient metal organic framework (MOF)-based copper catalysts for the base-free aerobic oxidation of various alcohols. RSC Adv. 7(29), 17806–17812 (2017). https://doi.org/10.1039/C6RA28743C

    Article  CAS  Google Scholar 

  14. A. Czaja, N. Trukhan, U. Muller, Industrial applications of metal-organic frameworks. Chem. Soc. Rev. 38(5), 1284–1293 (2009). https://doi.org/10.1039/b804680h

    Article  CAS  PubMed  Google Scholar 

  15. Y. Lee, J. Kim, W. Ahn, Synthesis of metal-organic frameworks: a mini review. Korean J. Chem. Eng. 30(9), 1667–1680 (2013). https://doi.org/10.1007/s11814-013-0140-6

    Article  CAS  Google Scholar 

  16. N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112(2), 933–969 (2012). https://doi.org/10.1021/cr200304e

    Article  CAS  PubMed  Google Scholar 

  17. C. Vaitsis, G. Sourkouni, C. Argirusis, Metal Organic Frameworks (MOFs) and ultrasound: a review. Ultrason. Sonochem. 52, 106–119 (2019). https://doi.org/10.1016/j.ultsonch.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  18. H. Ghafuri, F. Ganjali, P. Hanifehnejad, CuBTC MOF as a Novel and Efficient Catalyst for the Synthesis of 1,8-Dioxo-octa-hydro Xanthene. Chem Proc 3, 2 (2021). https://doi.org/10.3390/ecsoc-24-08359

    Article  Google Scholar 

  19. H. Mollabagher, S. Taheri, M. Mojtahedi, S. Seyedmousavi, Cu-metal organic frameworks (Cu-MOF) as an environment-friendly and economical catalyst for one pot synthesis of tacrine derivatives. RSC Adv. 10, 1995–2003 (2020)

    Article  CAS  Google Scholar 

  20. J. Flores, E. González, A. Alejandre, J. Pliego, A. Martínez, T. Vázquez, E. Lima, E. Zamora, M. García, M. Sánchez, I. Ibarra, Greener synthesis of Cu-MOF-74 and its catalytic use for the generation of vanillin. Dalton Trans. 8, 47 (2018). https://doi.org/10.1039/c7dt04701k

    Article  CAS  Google Scholar 

  21. R. Nivetha, A. Sajeev, A. Mary Paul, K. Gothandapani, S. Gnanasekar, P. Bhardwaj, G. Jacob, R. Sellappan, V. Raghavan, K. Chandar, Cu based Metal Organic Framework (Cu-MOF) for electrocatalytic hydrogen evolution reaction. Mater. Research Exp. 8, 114001 (2020). https://doi.org/10.1088/2053-1591/abb056

    Article  CAS  Google Scholar 

  22. Z. Sahar, M. Morassaei, O. Amiric, M. Niasarib, Green synthesis of dysprosium stannate nanoparticles using Ficus carica extract as photocatalyst for the degradation of organic pollutants under visible irradiation. Ceram. Int. 46, 6095–6107 (2020). https://doi.org/10.1016/j.ceramint.2019.11.072

    Article  CAS  Google Scholar 

  23. Z. Sahar, M. Mousavi, Recent advances in nanostructured Sn−Ln mixed-metal oxides as sunlight-activated nanophotocatalyst for high-efficient removal of environmental pollutants. Ceram. Int. 47, 23702–23724 (2021). https://doi.org/10.1016/j.ceramint.2021.05.155

    Article  CAS  Google Scholar 

  24. Z. Sahar, M. Baladi, M. Niasari, Sono-synthesis of MnWO4 ceramic nanomaterials as highly efficient photocatalysts for the decomposition of toxic pollutants. Ceram. Int. 47, 30178–30187 (2021). https://doi.org/10.1016/j.ceramint.2021.07.197

    Article  CAS  Google Scholar 

  25. Z. Sahar, Z. Salehi, O. Amiri, M. Niasari, Simple fabrication of Pr2Ce2O7 nanostructures via a new and ecofriendly route; a potential electrochemical hydrogen storage material. J. Alloys Compd. 791, 792–799 (2019). https://doi.org/10.1016/j.jallcom.2019.04.005

    Article  CAS  Google Scholar 

  26. Z. Sahar, M. Baladib, O. Amiric, M. Niasari, Sonochemical synthesis and characterization of silver tungstate nanostructures as visible-light-driven photocatalyst for waste-water treatment. Sep. Purif. Technol. 248, 117062 (2020). https://doi.org/10.1016/j.seppur.2020.117062

    Article  CAS  Google Scholar 

  27. S. Ajabshir, S. Heidari, M. Niasari, Rapid and green combustion synthesis of nano-composites based on Zn–Co–O nanostructures as photo-catalysts for enhanced degradation of acid brown 14 contaminant under sunlight. Sep. Purif. Technol. 280, 119841 (2022). https://doi.org/10.1016/j.seppur.2021.119841

    Article  CAS  Google Scholar 

  28. H. Etemadi, S. Afsharkia, Z. Sahar, E. Shokri, Effect of alumina nanoparticles on the antifouling properties of polycarbonate-polyurethane blend ultrafiltration membrane for water treatment. Polym. Engendering Sci. 2, 1–8 (2021). https://doi.org/10.1002/pen.25764

    Article  CAS  Google Scholar 

  29. M. Kamazani, Z. Sahar, M. Ghodrati, One-step sonochemical synthesis of Zn(OH)2/ZnV3O8 nanostructures as a potent material in electrochemical hydrogen storage. J. Mater. Sci. 31, 17332–17338 (2020). https://doi.org/10.1007/s10854-020-04289-4

    Article  CAS  Google Scholar 

  30. N. Yin, K. Wang, Y. Xia, Z. Li, Novel melamine modified metal-organic frameworks for remarkably high removal of heavy metal Pb (II). Desalination 430, 120–127 (2018). https://doi.org/10.1016/j.desal.2017.12.057

    Article  CAS  Google Scholar 

  31. W. El-Sawy, N. Mohamed, E. Kassem, A. ElAty, Synthesis of new benzofuran derivatives and evaluation of their antimicrobial activities. Res J Pharm Biol Chem Sci 6, 213–224 (2015)

    Google Scholar 

  32. R. Ahmad, G. Mehrorang, Application of Cu-based metal-organic framework (Cu-BDC) as a sorbent for dispersive solid-phase extraction of gallic acid from orange juice samples using HPLC-UV method. Arab. J. Chem. 13, 5218–5228 (2020). https://doi.org/10.1016/j.arabjc.2020.02.020

    Article  CAS  Google Scholar 

  33. N. Sahiner, S. Demirci, K. Sel, Covalent organic framework based on melamine and dibromoalkanes for versatile use. J. Porous Mater. 23, 1025–1035 (2016).

    Article  CAS  Google Scholar 

  34. L. Zang, J. Qiu, C. Yang, Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization. Sci Rep 6, 20470 (2016). https://doi.org/10.1038/srep20470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. R. Kaur, A. Kaur, A. Umar, W. Anderson, S. Kansa, Metal organic framework (MOF) porous octahedral nanocrystals of Cu-BTC: synthesis, properties and enhanced adsorption properties. Mater. Res. Bull. 109, 124–133 (2019). https://doi.org/10.1016/j.materresbull.2018.07.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors submit their acknowledgment to their institute (National Research Centre, Cairo, Egypt) for encouragement the team work to do this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa S. Abdelmoaty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelmoaty, A.S., El-Beih, A.A. & Hanna, A.A. Synthesis, Characterization and Antimicrobial Activity of Copper-Metal Organic Framework (Cu-MOF) and Its Modification by Melamine. J Inorg Organomet Polym 32, 1778–1785 (2022). https://doi.org/10.1007/s10904-021-02187-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02187-8

Keywords

Navigation