Skip to main content

Advertisement

Log in

Study of the Effect of Low-Energy Irradiation with O2+ Ions on Radiation Hardening and Modification of the Properties of Thin TiO2 Films

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The paper presents the results of a systematic study of the effect of exposure to low-energy O2+ ions on the structural, optical, mechanical properties, as well as resistance to degradation and aging of thin TiO2 films. The studied samples were obtained using the magnetron sputtering method; the film thickness was 600 nm. Atomic force and scanning electron microscopy, energy dispersive analysis, X-ray diffraction, and UV–Vis spectroscopy were used as the main research methods. In the course of the results, dose dependences of changes in the properties of thin films were established, and it was also shown that irradiation leads to an increase in hardness and resistance to cracking due to radiation hardening. A decrease in the band gap from 3.61 to 3.43 eV not only changes the optical properties, but also has a significant effect on the change in the conductivity. The novelty and relevance of this study lies not only in obtaining new data on the effect of ionizing radiation on the properties of thin films, but also in expanding the prospects for the use of ion irradiation for the purpose of radiation hardening and modification of new materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kumar, V., et al. Study of humidity sensing properties and ion beam induced modifications in SnO2-TiO2 nanocomposite thin films. Surface Coatings Technol. (2020): 125768.

  2. E.R. Shaaban et al., Dilute magnetic semiconductor of ZnCoSe thin films: structural, optical, and magnetic characteristics. J. Am. Ceram. Soc. 102(7), 4067–4081 (2019)

    Article  CAS  Google Scholar 

  3. C.-Y. Tsay et al., Microstructural and optical properties of Ga-doped ZnO semiconductor thin films prepared by sol–gel process. Thin Solid Films 519(5), 1516–1520 (2010)

    Article  CAS  Google Scholar 

  4. S.M. Rashwan, S.M. Abd El-Wahab, M.M. Mohamed, Electrodeposition and characterization of CdSe semiconductor thin films. J. Mater. Sci. 18(6), 575–585 (2007)

    CAS  Google Scholar 

  5. K.K. Kadyrzhanov, K. Tinishbaeva, V.V. Uglov, Investigation of the effect of exposure to heavy Xe22+ ions on the mechanical properties of carbide ceramics. Eurasian Phys. Techn. J. 17(33), 46–53 (2020)

    Article  Google Scholar 

  6. Liu, Zhao, et al. "Strain engineering of oxide thin films for photocatalytic applications." Nano Energy (2020): 104732.

  7. W. Zhang, D. Wang, W. Zheng, A semiconductor-electrochemistry model for design of high-rate Li ion battery. J. Energy Chem. 41, 100–106 (2020)

    Article  Google Scholar 

  8. A.A. Hssi et al., High-quality Cu 2 O thin films via electrochemical synthesis under a variable applied potential. J. Mater. Sci. 31(5), 4237–4244 (2020)

    Google Scholar 

  9. J.-W. Choi et al., Tin oxysulfide composite thin films based on atomic layer deposition of tin sulfide and tin oxide using Sn (dmamp) 2 as Sn precursor. Ceram. Int. 46(4), 5109–5118 (2020)

    Article  CAS  Google Scholar 

  10. Makhlouf, Abdel Salam Hamdy, Adrian Perez, and Edgar Guerrero. Recent trends in smart polymeric coatings in biomedicine and drug delivery applications. In: Advances in smart coatings and thin films for future industrial and biomedical engineering applications. Elsevier, 2020. 359–381.

  11. M.L. Coluccio et al., Emerging designs of electronic devices in biomedicine. Micromachines 11(2), 123 (2020)

    Article  PubMed Central  Google Scholar 

  12. López-Suárez, A, et al. Optical, structural and electrical properties of ZnO thin films doped with Mn. J. Mater. Sci. (2020): 1–9.

  13. N. Méndez-Lozano et al., Morphological study of TiO2 thin films doped with cobalt by metal organic chemical vapor deposition. Res. Phys. 16, 102891 (2020)

    Google Scholar 

  14. Gaukås, NH, et al. (2020) Ferroelectric and dielectric properties of Ca 2+-doped and Ca 2+–Ti 4+ co-doped K 0.5 Na 0.5 NbO 3 thin films. J Mater Chem C 8.15: 5102–5111.

  15. Xiying Ma et al., Photoelectric characteristics of rare earth element Er doped molybdenum selenide thin films. J. Nanoelectron. Optoelectron. 15(3), 384–388 (2020)

    Article  CAS  Google Scholar 

  16. M. Pérez-González et al., Sol-gel synthesis of Ag-loaded TiO2-ZnO thin films with enhanced photocatalytic activity. J. Alloy. Compd. 779, 908–917 (2019)

    Article  CAS  Google Scholar 

  17. M.K. Tariq et al., Comparative study of Ag, Sn or Zn doped TiO2 thin films for photocatalytic degradation of methylene blue and methyl orange. Mater. Res. Exp. 6(10), 106435 (2019)

    Article  CAS  Google Scholar 

  18. M. Baradaran et al., The role of Al concentration on improving the photocatalytic performance of nanostructured ZnO/ZnO: Al/ZnO multilayer thin films. J. Alloy. Compd. 788, 289–301 (2019)

    Article  CAS  Google Scholar 

  19. A.M. Alotaibi et al., Enhanced photocatalytic and antibacterial ability of Cu-doped anatase TiO2 thin films: theory and experiment. ACS Appl. Mater. Interfaces 12(13), 15348–15361 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. S. Zhang et al., Excellent mechanical, tribological and anti-corrosive performance of novel Ti-DLC nanocomposite thin films prepared via magnetron sputtering method. Carbon 151, 136–147 (2019)

    Article  CAS  Google Scholar 

  21. V.I. Shymanski et al., Structure and phase composition of tungsten alloys modified by compression plasma flows and high-intense pulsed ion beam impacts. Appl. Surf. Sci. 491, 43–52 (2019)

    Article  CAS  Google Scholar 

  22. A.F. Zatsepin et al., Modification of MgAl 2 O 4 electron-optic properties by pulsed ion beam. Phys. At. Nucl. 82(11), 1558–1564 (2019)

    Article  CAS  Google Scholar 

  23. K. Mahmood et al., Surface, structural, electrical and mechanical modifications of pulsed laser deposited ZrN thin films by implantation of MeV carbon ions. Nuclear Instrum Methods Phys. Res. Sect. B 448, 61–69 (2019)

    Article  CAS  Google Scholar 

  24. A.I. Ryabchikov et al., Surface modification of Al by high-intensity low-energy Ti-ion implantation: microstructure, mechanical and tribological properties. Surface Coatings Technol. 372, 1–8 (2019)

    Article  CAS  Google Scholar 

  25. R. Wei, Low energy, high current density ion implantation of materials at elevated temperatures for tribological applications. Surface Coatings Technol. 83(1–3), 218–227 (1996)

    Article  CAS  Google Scholar 

  26. C. Bonafos et al., Manipulation of two-dimensional arrays of Si nanocrystals embedded in thin SiO 2 layers by low energy ion implantation. J. Appl. Phys. 95(10), 5696–5702 (2004)

    Article  CAS  Google Scholar 

  27. H. Shen et al., Visible-light photocatalysis of nitrogen-doped TiO2 nanoparticulate films prepared by low-energy ion implantation. Appl. Surface Sci. 253(17), 7024–7028 (2007)

    Article  CAS  Google Scholar 

  28. A.L. Stepanov, I.B. Khaibullin, Fabrication of metal nanoparticles in sapphire by low-energy ion implantation. Rev. Adv. Mater. Sci 9(2), 109–129 (2005)

    CAS  Google Scholar 

  29. A. Hernández et al., Optical properties of porous GaAs formed by low energy ion implantation. Vacuum 171, 108976 (2020)

    Article  CAS  Google Scholar 

  30. X. Xiao, Yu. Long, Nano-indentation of ion-irradiated nuclear structural materials: a review. Nuclear Mater. Energy 22, 100721 (2020)

    Article  Google Scholar 

  31. C. Luo et al., Ionoluminescence and photoluminescence study of annealing and ion irradiation effects on zinc oxide. Nuclear Instrum. Methods Phys. Res. Sect. B 471, 7–12 (2020)

    Article  CAS  Google Scholar 

  32. N. Chuklina et al., Comparative quantum chemistry study of the F-center in lanthanum trifluoride. Nucl. Instrum. Methods Phys. Res., Sect. B 474, 57–62 (2020)

    Article  CAS  Google Scholar 

  33. L.N. Myasnikova et al., Computer simulations of the band structure and density of states of the linear chains of NaCl ions. Latvian J. Phys. Tech. Sci. 56(4), 49–56 (2019)

    Article  CAS  Google Scholar 

  34. K. Kimura, S. Sharma, A. Popov, Fast electron–hole plasma luminescence from track-cores in heavy-ion irradiated wide-band-gap crystals. Nucl. Instrum. Methods Phys. Res., Sect. B 191(1–4), 48–53 (2002)

    Article  CAS  Google Scholar 

  35. A. Lushchik et al., Influence of complex impurity centres on radiation damage in wide-gap metal oxides. Nucl. Instrum. Methods Phys. Res Sect. B 374, 90–96 (2016)

    Article  CAS  Google Scholar 

  36. A. Kozlovskiy et al., Structure and corrosion properties of thin TiO2 films obtained by magnetron sputtering. Vacuum 164, 224–232 (2019)

    Article  CAS  Google Scholar 

  37. A. Kozlovskiy et al., The study of the applicability of ionizing radiation to increase the photocatalytic activity of TiO2 thin films. J. Nanostruct. Chem. (2020). https://doi.org/10.1007/s40097-020-00353-x

    Article  Google Scholar 

  38. A.J. Perry, H.K. Pulker, Hardness, adhesion and abrasion resistance of TiO2 films on glass. Thin Solid Films 124(3–4), 323–333 (1985)

    Article  CAS  Google Scholar 

  39. P.J. Martin et al., Deposition of TiN, TiC, and TiO2 films by filtered arc evaporation. Surf. Coat. Technol. 49(1–3), 239–243 (1991)

    Article  CAS  Google Scholar 

  40. M. Zheng et al., Preparation, structure and properties of TiO2–PVP hybrid films. Mater. Sci. Eng B 77(1), 55–59 (2000)

    Article  Google Scholar 

  41. A.O. Zhigachev et al., Low-temperature aging of baddeleyite-based Ca-TZP ceramics. J. Am. Ceram. Soc. 100(7), 3283–3292 (2017)

    Article  CAS  Google Scholar 

  42. G.K.R. Pereira et al., Low-temperature degradation of Y-TZP ceramics: a systematic review and meta-analysis. J. Mech. Behav. Biomed. Mater. 55, 151–163 (2016)

    Article  CAS  Google Scholar 

  43. G.K.R. Pereira et al., Mechanical behavior of a Y-TZP ceramic for monolithic restorations: effect of grinding and low-temperature aging. Mater. Sci. Eng. C 63, 70–77 (2016)

    Article  CAS  Google Scholar 

  44. V.D. Mote, Y. Purushotham, B.N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6(1), 6 (2012)

    Article  Google Scholar 

  45. A.L. Kozlovskiy et al., Dynamics of radiation damage in AlN ceramics under high-dose irradiation, typical for the processes of swelling and hydrogenation. Crystals 10(6), 546 (2020)

    Article  CAS  Google Scholar 

  46. V. Kumar, R. Kumar, Low energy Kr5+ ion beam engineering in the optical, structural, surface morphological and electrical properties of RF sputtered TiO2 thin films. Opt. Mater. 91, 455–469 (2019)

    Article  CAS  Google Scholar 

  47. J.H. Evans, An interbubble fracture mechanism of blister formation on helium-irradiated metals. J. Nucl. Mater. 68(2), 129–140 (1977)

    Article  CAS  Google Scholar 

  48. F. Laatar et al., Effect of deposition temperature on the structural and optical properties of CdSe QDs thin films deposited by CBD method. Mater. Res. Bull. 78, 83–95 (2016)

    Article  CAS  Google Scholar 

  49. V.V. Uglov et al., Simulation of defect formation, amorphization and cluster formation processes in nc-TiN/a-Si3N4 nanocomposite under Xe irradiation. Comput. Mater. Sci. 143, 143–156 (2018)

    Article  CAS  Google Scholar 

  50. V.V. Uglov et al., Blister formation in ZrN/SiN multilayers after He irradiation. Surf. Coat. Technol. 344, 170–176 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (No. BR05235921).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kozlovskiy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlovskiy, A., Shlimas, D., Kenzhina, I. et al. Study of the Effect of Low-Energy Irradiation with O2+ Ions on Radiation Hardening and Modification of the Properties of Thin TiO2 Films. J Inorg Organomet Polym 31, 790–801 (2021). https://doi.org/10.1007/s10904-020-01787-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01787-0

Keywords

Navigation