Skip to main content
Log in

Photo-Catalytic and Anti-microbial Activities of rGO/CuO Nanocomposite

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this work, cost-effective reduced graphene oxide/copper oxide (rGO/CuO) nanocomposite was synthesized by the reduction of GO to rGO and deposition of CuO on the surface of rGO using single step simple chemical method. The prepared nanocomposite was characterized using energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD), ultraviolet–visible (UV–Vis) and Fourier-transform infrared (FT-IR) spectroscopy. The appearance of peak at 2θ = 11.03° confirmed the synthesis of GO and peaks at 25.65°, 36.14°, 43.09°, 49.91° and 69.52° indicated the synthesis of the nanocomposite. It was found that the normal particulate size of the prepared nanocomposite was in range of 30 to 50 nm. SEM analysis was done to demonstrate the external morphology of the prepared GO and the nanocomposite. The prepared rGO/CuO nanocomposite was analyzed towards photo-catalytic activity for the degradation of methylene blue (MB) and for the catalytic reduction of 4-nitrophenol (4-NP) to 4- aminophenol (4-AP). It was found that about 81% of MB was degraded in 240 min under UV light and complete conversion of 4-NP to 4-AP was done in only 2 min. The prepared rGO/CuO nanocomposite was also analyzed for anti-microbial activity. It was found that the rGO/CuO nanocomposite exhibits better anti-bacterial and anti-fungal activities than GO. The results indicated the increased biocompatibility of the rGO/CuO nanocomposites than GO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T.A. Saleh, V.K. Gupta, Column with CNT/magnesium oxide composite for lead (II) removal from water. Environ. Sci. Pollut. Res. 19(4), 1224–1228 (2012)

    CAS  Google Scholar 

  2. A.T. Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun, Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 1(1), 31–47 (2019)

    Google Scholar 

  3. L. Cheng, Y. Wang, D. Huang, T. Nguyen, Y. Jiang, H. Yu, N. Ding, G. Ding, Z. Jiao, Facile synthesis of size-tunable CuO/graphene composites and their high photocatalytic performance. Mater. Res. Bull. 61, 409–414 (2015)

    CAS  Google Scholar 

  4. J. Zhao, Z. Wang, J.C. White, B. Xing, Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. Environ. Sci. Technol. 48(17), 9995–10009 (2014)

    CAS  PubMed  Google Scholar 

  5. A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)

    CAS  PubMed  Google Scholar 

  6. K.E. Whitener Jr., P.E. Sheehan, Graphene synthesis. Diam. Relat. Mater. 46, 25–34 (2014)

    CAS  Google Scholar 

  7. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    CAS  PubMed  Google Scholar 

  8. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008)

    CAS  Google Scholar 

  9. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

    CAS  PubMed  Google Scholar 

  10. S. Noamani, S. Niroomand, M. Rastgar, M. Sadrzadeh, Carbon-based polymer nanocomposite membranes for oily wastewater treatment. NPJ Clean Water 2(1), 20 (2019)

    CAS  Google Scholar 

  11. W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Synthesis of graphene and its applications: a review. Crit. Rev. Solid State Mater. Sci. 35(1), 52–71 (2010)

    CAS  Google Scholar 

  12. L. Sun, C. Tian, L. Wang, J. Zou, G. Mu, H. Fu, Magnetically separable porous graphitic carbon with large surface area as excellent adsorbents for metal ions and dye. J. Mater. Chem. 21(20), 7232–7239 (2011)

    CAS  Google Scholar 

  13. J. Lu, L.T. Drzal, R.M. Worden, I. Lee, Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane. Chem. Mater. 19(25), 6240–6246 (2007)

    CAS  Google Scholar 

  14. V. Aroutiounian, Band gap opening in graphene. Armen. J. Phys. 6(3), 141–148 (2013)

    CAS  Google Scholar 

  15. H. Siddiqui, M.R. Parra, P. Pandey, N. Singh, M.S. Qureshi, F.Z. Haque, A review: synthesis, characterization and cell performance of Cu2O based material for solar cells. Orient. J. Chem. 28(3), 1533–1545 (2012)

    CAS  Google Scholar 

  16. R. Etefagh, E. Azhir, N. Shahtahmasebi, Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Sci. Iran. 20(3), 1055–1058 (2013)

    Google Scholar 

  17. Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater Sci. 60, 208–337 (2014)

    CAS  Google Scholar 

  18. M.E. Grigore, E.R. Biscu, A.M. Holban, M.C. Gestal, A.M. Grumezescu, Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals 9(4), 75 (2016)

    PubMed Central  Google Scholar 

  19. J. Jayaprakash, N. Srinivasan, P. Chandrasekaran, Surface modifications of CuO nanoparticles using Ethylene diamine tetra acetic acid as a capping agent by sol–gel routine. Spectrochim. Acta A 123, 363–368 (2014)

    CAS  Google Scholar 

  20. M. Bibi, H. Abbas, S. Baqi, Outcome of temperature variation on sol-gel prepared CuO nanostructure properties (optical and dielectric). Mater. Chem. Phys. 192, 67–71 (2017)

    CAS  Google Scholar 

  21. H. Siddiqui, M.R. Parra, F.Z. Haque, Optimization of process parameters and its effect on structure and morphology of CuO nanoparticle synthesized via the sol−gel technique. J. Sol-Gel. Sci. Technol. 87(1), 125–135 (2018)

    CAS  Google Scholar 

  22. N. Le Van, C. Ma, J. Shang, Y. Rui, S. Liu, B. Xing, Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144, 661–670 (2016)

    PubMed  Google Scholar 

  23. J. Xu, W. Ji, Z. Shen, S. Tang, X. Ye, D. Jia, X. Xin, Preparation and characterization of CuO nanocrystals. J. Solid State Chem. 147(2), 516–519 (1999)

    CAS  Google Scholar 

  24. M. Thangamuthu, K.Y. Hsieh, P.V. Kumar, G.-Y. Chen, Graphene- and graphene oxide-based nanocomposite platforms for electrochemical biosensing applications. Int. J. Mol. Sci. 20(12), 2975 (2019)

    CAS  PubMed Central  Google Scholar 

  25. V. Dhand, K.Y. Rhee, H. Ju Kim, D. Ho Jung, A comprehensive review of graphene nanocomposites: research status and trends. J. Nanomater. (2013). https://doi.org/10.1155/2013/763953

    Article  Google Scholar 

  26. S. Liu, J. Tian, L. Wang, Y. Luo, X. Sun, One-pot synthesis of CuO nanoflower-decorated reduced graphene oxide and its application to photocatalytic degradation of dyes. Catal. Sci. Technol. 2(2), 339–344 (2012)

    CAS  Google Scholar 

  27. A. Dandia, S. Bansal, R. Sharma, K.S. Rathore, V. Parewa, Microwave-assisted nanocatalysis: a CuO NPs/rGO composite as an efficient and recyclable catalyst for the Petasis-borono–Mannich reaction. RSC Adv. 8(53), 30280–30288 (2018)

    CAS  Google Scholar 

  28. A. Arshad, J. Iqbal, M. Siddiq, M.U. Ali, A. Ali, H. Shabbir, U.B. Nazeer, M.S. Saleem, Solar light triggered catalytic performance of graphene-CuO nanocomposite for waste water treatment. Ceram. Int. 43(14), 10654–10660 (2017)

    CAS  Google Scholar 

  29. J. Chen, B. Yao, C. Li, G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013)

    CAS  Google Scholar 

  30. S. Dutta, K. Das, K. Chakrabarti, D. Jana, S. De, S. De, Highly efficient photocatalytic activity of CuO quantum dot decorated rGO nanocomposites. J. Phys. D 49(31), 315107 (2016)

    Google Scholar 

  31. D. Han, H. Yang, C. Zhu, F. Wang, Controlled synthesis of CuO nanoparticles using TritonX-100-based water-in-oil reverse micelles. Powder Technol. 185(3), 286–290 (2008)

    CAS  Google Scholar 

  32. M.N. Nahas, A. Jilani, N. Salah, Microwave synthesis of ultrathin, non-agglomerated CuO nanosheets and their evaluation as nanofillers for polymer nanocomposites. J. Alloys Compd. 680, 350–358 (2016)

    CAS  Google Scholar 

  33. M. Darvishi, G. Mohseni-Asgerani, J. Seyed-Yazdi, Simple microwave irradiation procedure for the synthesis of CuO/graphene hybrid composite with significant photocatalytic enhancement. Surf. Interfaces 7, 69–73 (2017)

    CAS  Google Scholar 

  34. J. Zhao, S. Liu, S. Yang, S. Yang, Hydrothermal synthesis and ferromagnetism of CuO nanosheets. Appl. Surf. Sci. 257(22), 9678–9681 (2011)

    CAS  Google Scholar 

  35. N. Yusoff, N. Huang, M. Muhamad, S. Kumar, H. Lim, I. Harrison, Hydrothermal synthesis of CuO/functionalized graphene nanocomposites for dye degradation. Mater. Lett. 93, 393–396 (2013)

    CAS  Google Scholar 

  36. S.J. Davarpanah, R. Karimian, F. Piri, Synthesis of copper (II) oxide (CuO) nanoparticles and its application as gas sensor. J. Appl. Biotechnol. Rep. 2(4), 329–332 (2015)

    CAS  Google Scholar 

  37. C.H. Lu, H.H. Yang, C.L. Zhu, X. Chen, G.N. Chen, A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed. 48(26), 4785–4787 (2009)

    CAS  Google Scholar 

  38. J. Tian, H. Li, Z. Xing, L. Wang, Y. Luo, A.M. Asiri, A.O. Al-Youbi, X. Sun, One-pot green hydrothermal synthesis of CuO–Cu2O–Cu nanorod-decorated reduced graphene oxide composites and their application in photocurrent generation. Catal. Sci. Technol. 2(11), 2227–2230 (2012)

    CAS  Google Scholar 

  39. C. Wang, F. Yang, Y. Cao, X. He, Y. Tang, Y. Li, Cupric oxide nanowires on three-dimensional copper foam for application in click reaction. RSC Adv. 7(16), 9567–9572 (2017)

    CAS  Google Scholar 

  40. T. Naseem, M. Waseem, M. Hafeez, S.U. Din, S. Haq, R. Mahfoz Ur, Reduced graphene oxide/zinc oxide nanocomposite: from synthesis to its application for wastewater purification and antibacterial activity. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01529-2

    Article  Google Scholar 

  41. I. Ali, New generation adsorbents for water treatment. Chem. Rev. 112(10), 5073–5091 (2012)

    CAS  PubMed  Google Scholar 

  42. A. Al Nafiey, A. Addad, B. Sieber, G. Chastanet, A. Barras, S. Szunerits, R. Boukherroub, Reduced graphene oxide decorated with Co3O4 nanoparticles (rGO-Co3O4) nanocomposite: a reusable catalyst for highly efficient reduction of 4-nitrophenol, and Cr (VI) and dye removal from aqueous solutions. Chem. Eng. J. 322, 375–384 (2017)

    CAS  Google Scholar 

  43. D.C. Alves, R. Silva, D. Voiry, T. Asefa, M. Chhowalla, Copper nanoparticles stabilized by reduced graphene oxide for CO2 reduction reaction. Mater. Renew. Sustain. Energy 4(1), 2 (2015)

    Google Scholar 

  44. S. Sagadevan, Z. Zaman Chowdhury, M.R. Johan, F.A. Aziz, E.M. Salleh, A. Hawa, R.F. Rafique, A one-step facile route synthesis of copper oxide/reduced graphene oxide nanocomposite for supercapacitor applications. J. Exp. Nanosci. 13(1), 284–296 (2018)

    CAS  Google Scholar 

  45. M. Nasrollahzadeh, S.M. Sajadi, A. Rostami-Vartooni, S.M. Hussin, Green synthesis of CuO nanoparticles using aqueous extract of Thymus vulgaris L. leaves and their catalytic performance for N-arylation of indoles and amines. J. Colloid Interface Sci. 466, 113–119 (2016)

    CAS  PubMed  Google Scholar 

  46. Z. Luo, Y. Lu, L.A. Somers, A.T.C. Johnson, High yield preparation of macroscopic graphene oxide membranes. J. Am. Chem. Soc. 131(3), 898–899 (2009)

    CAS  PubMed  Google Scholar 

  47. J.I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, Graphene oxide dispersions in organic solvents. Langmuir 24(19), 10560–10564 (2008)

    CAS  PubMed  Google Scholar 

  48. M.J. Fernández-Merino, L. Guardia, J. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J. Tascón, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 114(14), 6426–6432 (2010)

    Google Scholar 

  49. S. Hou, S. Su, M.L. Kasner, P. Shah, K. Patel, C.J. Madarang, Formation of highly stable dispersions of silane-functionalized reduced graphene oxide. Chem. Phys. Lett. 501(1–3), 68–74 (2010)

    CAS  Google Scholar 

  50. R.S. Rajaura, V. Sharma, R.S. Ronin, D.K. Gupta, S. Srivastava, K. Agrawal, Y. Vijay, Synthesis, characterization and enhanced antimicrobial activity of reduced graphene oxide–zinc oxide nanocomposite. Mater. Res. Express 4(2), 025401 (2017)

    Google Scholar 

  51. P. Fakhri, B. Jaleh, M. Nasrollahzadeh, Synthesis and characterization of copper nanoparticles supported on reduced graphene oxide as a highly active and recyclable catalyst for the synthesis of formamides and primary amines. J. Mol. Catal. A 383, 17–22 (2014)

    Google Scholar 

  52. C.-K. Wu, M. Yin, S. O'Brien, J.T. Koberstein, Quantitative analysis of copper oxide nanoparticle composition and structure by X-ray photoelectron spectroscopy. Chem. Mater. 18(25), 6054–6058 (2006)

    CAS  Google Scholar 

  53. A. Gupta, R. Jamatia, R.A. Patil, Y.-R. Ma, A.K. Pal, Copper oxide/reduced graphene oxide nanocomposite-catalyzed synthesis of flavanones and flavanones with triazole hybrid molecules in one pot: a green and sustainable approach. ACS Omega 3(7), 7288–7299 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Z. Zhou, C. Lu, X. Wu, X. Zhang, Cellulose nanocrystals as a novel support for CuO nanoparticles catalysts: Facile synthesis and their application to 4-nitrophenol reduction. RSC Adv. 3(48), 26066–26073 (2013)

    CAS  Google Scholar 

  55. B. Cojocaru, Ş. Neaţu, V.I. Pârvulescu, K. Dumbuya, H.-P. Steinrück, J.M. Gottfried, C. Aprile, H. Garcia, J. Scaiano, Band gap effect on the photocatalytic activity of supramolecular structures obtained by entrapping photosensitizers in different inorganic supports. Phys. Chem. Chem. Phys. 11(27), 5569–5577 (2009)

    CAS  PubMed  Google Scholar 

  56. T.F. Yeh, J.M. Syu, C. Cheng, T.H. Chang, H. Teng, Graphite oxide as a photocatalyst for hydrogen production from water. Adv. Funct. Mater. 20(14), 2255–2262 (2010)

    CAS  Google Scholar 

  57. R. Saravanan, S. Joicy, V. Gupta, V. Narayanan, A. Stephen, Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. Mater. Sci. Eng. C 33(8), 4725–4731 (2013)

    CAS  Google Scholar 

  58. S. Zaman, A. Zainelabdin, G. Amin, O. Nur, M. Willander, Efficient catalytic effect of CuO nanostructures on the degradation of organic dyes. J. Phys. Chem. Solids 73(11), 1320–1325 (2012)

    CAS  Google Scholar 

  59. S.D. Çalhan, M. Gündoğan, Copper oxide nanoparticles: synthesis, characterization, antimicrobial activities and catalytic reduction of methylene blue. J. Turk. Chem. Soc. A 2(7), 561–570 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zain-ul-Abdin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 774 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddique, S., Zain-ul-Abdin, Waseem, M. et al. Photo-Catalytic and Anti-microbial Activities of rGO/CuO Nanocomposite. J Inorg Organomet Polym 31, 1359–1372 (2021). https://doi.org/10.1007/s10904-020-01760-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01760-x

Keywords

Navigation