Skip to main content
Log in

Formation of Silver Nanoparticles via Aspilia pluriseta Extracts Their Antimicrobial and Catalytic Activity

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Green synthesized metallic nanoparticles are continually receiving attention as antimicrobial agents and catalyst for degradation of a host of organic compounds. In this study, silver nanoparticles were synthesized using Aspilia pluriseta extracts and evaluated for their antimicrobial and photocatalytic activity. Using a UV–Vis spectrophotometer, the surface plasmon resonance observed at 427 nm indicated the materialization of silver nanoparticles. Probable vibrational stretches that are characteristic of silver nanoparticles such as –OH stretching vibrations and –CH2 vibrational stretch, were identified using an FT-IR spectrophotometer. In order to understand the morphology and composition of the synthesized nanoparticles, they were studied further using scanning electron microscope (SEM), dynamic light scattering analyzer (DLS), transmission electron microscope (TEM) and X-ray diffractometer (XRD) hence revealing formation of crystalline, spherically shaped silver nanoparticles. The synthesized silver nanoparticles (AgNPs), exhibited broad-spectrum activity which was concentration dependent against; two-gram positive bacteria (Bacillus subtilis and Staphylococcus aureus), two-gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and the fungal (Candida albicans). Effectiveness of the nanomaterials in photocatalytic degradation was based on irradiation time. Decolorization and degradation of the dye took less than 30 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Referencess

  1. M. Ul-Islam, M.W. Ullah, S. Khan, S. Manan, W.A. Khattak, W. Ahmad, N. Shah, J.K. Park, Current advancements of magnetic nanoparticles in adsorption and degradation of organic pollutants. Environ. Sci. Pollut. Res. 24, 12713–12722 (2017). https://doi.org/10.1007/s11356-017-8765-3

    Article  Google Scholar 

  2. E.O. Dare, C.O. Oseghale, A.H. Labulo, E.T. Adesuji, E.E. Elemike, J.C. Onwuka, J.T. Bamgbose, Green synthesis and growth kinetics of nanosilver under bio-diversified plant extracts influence. J. Nanostruct. Chem. 5, 85–94 (2015). https://doi.org/10.1007/s40097-014-0139-5

    Article  CAS  Google Scholar 

  3. X.F. Zhang, Z.G. Liu, W. Shen, S. Gurunathan, Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17, 1–34 (2016). https://doi.org/10.3390/ijms17091534

    Article  CAS  Google Scholar 

  4. M.H. Jang, S. Lee, Y.S. Hwang, Characterization of silver nanoparticles under environmentally relevant conditions using asymmetrical flow field-flow fractionation (AF4). PLoS ONE (2015). https://doi.org/10.1371/journal.pone.0143149

    Article  PubMed  PubMed Central  Google Scholar 

  5. B.K. Mehta, M. Chhajlani, B.D. Shrivastava, Green synthesis of silver nanoparticles and their characterization by XRD, In: Proceedings of the Journal of Physics: Conference Series, Institute of Physics Publishing, 2017. https://doi.org/10.1088/1742-6596/836/1/012050

  6. Z.J. Jiang, C.Y. Liu, L.W. Sun, Catalytic properties of silver nanoparticles supported on silica spheres. J. Phys. Chem. B 109, 1730–1735 (2005). https://doi.org/10.1021/jp046032g

    Article  CAS  PubMed  Google Scholar 

  7. S. Prabhu, E.K. Poulose, Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2, 32 (2012). https://doi.org/10.1186/2228-5326-2-32

    Article  Google Scholar 

  8. S. Kokura, O. Handa, T. Takagi, T. Ishikawa, Y. Naito, T. Yoshikawa, Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed. Nanotechnol. Biol. Med. 6, 570–574 (2010). https://doi.org/10.1016/j.nano.2009.12.002

    Article  CAS  Google Scholar 

  9. L.J. Wilkinson, R.J. White, J.K. Chipman, Silver and nanoparticles of silver in wound dressings: a review of efficacy and safety. J. Wound Care 20, 543–549 (2011). https://doi.org/10.12968/jowc.2011.20.11.543

    Article  CAS  PubMed  Google Scholar 

  10. M. Ziabka, M. Dziadek, E. Menaszek, Biocompatibility of poly(acrylonitrile-butadiene-styrene) nanocomposites modified with silver nanoparticles. Polymers (Basel) (2018). https://doi.org/10.3390/polym10111257

    Article  Google Scholar 

  11. M.Z.A. Rafiquee, M.R. Siddiqui, M.S. Ali, H.A. Al-Lohedan, Z.A. Al-Othman, Synthesis, characterization and kinetics of formation of silver nanoparticles by reduction with adrenaline in the micellar media. Bioprocess. Biosyst. Eng. 38, 711–719 (2015). https://doi.org/10.1007/s00449-014-1311-5

    Article  CAS  PubMed  Google Scholar 

  12. K.O. Shittu, O. Ihebunna, Purification of simulated waste water using green synthesized silver nanoparticles of Piliostigma thonningii aqueous leave extract. Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 1–9 (2017). https://doi.org/10.1088/2043-6254/aa8536

    Article  CAS  Google Scholar 

  13. K.M.M. Abou El-Nour, A. Eftaiha, A. Al-Warthan, R.A.A. Ammar, Synthesis and applications of silver nanoparticles. Arab. J. Chem. 3, 135–140 (2010). https://doi.org/10.1016/j.arabjc.2010.04.008

    Article  CAS  Google Scholar 

  14. J. Balavijayalakshmi, V. Ramalakshmi, Carica papaya peel mediated synthesis of silver nanoparticles and its antibacterial activity against human pathogens. J. Appl. Res. Technol. 15, 413–422 (2017). https://doi.org/10.1016/j.jart.2017.03.010

    Article  Google Scholar 

  15. H. Kolya, P. Maiti, A. Pandey, T. Tripathy, Green synthesis of silver nanoparticles with antimicrobial and azo dye (Congo red) degradation properties using Amaranthus gangeticus Linn leaf extract. J. Anal. Sci. Technol. 6, 1–7 (2015). https://doi.org/10.1186/s40543-015-0074-1

    Article  CAS  Google Scholar 

  16. F. Taşkıran, D. Uzunoglu, A. Özer, Biosynthesis, characterization and determination of adsorbent properties of silver nanoparticles with Cyprus acacia (Acacia cyanophylla) Leaf Extract. ANADOLU Univ. J. Sci. Technol. A Appl. Sci. Eng. 1, 733–745 (2017). https://doi.org/10.18038/aubtda.299006

    Article  Google Scholar 

  17. Y. Wei, Z. Fang, L. Zheng, L. Tan, E.P. Tsang, Green synthesis of Fe nanoparticles using Citrus maxima peels aqueous extracts. Mater. Lett. 185, 384–386 (2016). https://doi.org/10.1016/j.matlet.2016.09.029

    Article  CAS  Google Scholar 

  18. N. Isa, Z. Lockman, Methylene blue dye removal on silver nanoparticles reduced by Kyllinga brevifolia. Environ. Sci. Pollut. Res. 26, 11482–11495 (2019). https://doi.org/10.1007/s11356-019-04583-7

    Article  CAS  Google Scholar 

  19. E.C. Gloria, V. Ederley, M. Gladis, H. César, O. Jaime, A. Oscar, I.U. José, J. Franklin, synthesis of silver nanoparticles (AgNPs) with antibacterial activity. In: Proceedings of the Journal of Physics: Conference Series, Institute of Physics Publishing, 2017. https://doi.org/10.1088/1742-6596/850/1/012023

  20. A.O. Nyabola, P.G. Kareru, E.S. Madivoli, E.G. Maina, I.S. Wanakai, Assessment of the anti-microbial action of zero valent iron nanoparticle synthesized by Aspilia pluriseta extracts. Chem. Sci. Int. J. 25, 1–10 (2018). https://doi.org/10.9734/csji/2018/45799

    Article  CAS  Google Scholar 

  21. M. Kumara Swamy, K.M. Sudipta, K. Jayanta, S. Balasubramanya, The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract. Appl. Nanosci. 5, 73–81 (2015). https://doi.org/10.1007/s13204-014-0293-6

    Article  CAS  Google Scholar 

  22. A. Azam, S.S. Habib, A. Memic, A.S. Ahmed, M. Oves, M.S. Khan, Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int. J. Nanomed. 7, 6003–6009 (2012). https://doi.org/10.2147/IJN.S35347

    Article  CAS  Google Scholar 

  23. J. Singh, T. Dutta, K.H. Kim, M. Rawat, P. Samddar, P. Kumar, “Green” synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. (2018). https://doi.org/10.1186/s12951-018-0408-4

    Article  Google Scholar 

  24. E.S. Madivoli, E.G. Maina, P.K. Kairigo, M.K. Murigi, J.K. Ogilo, J.O. Nyangau, P.K. Kimani, C. Kipyegon, In vitro antioxidant and antimicrobial activity of Prunus africana (Hook. F.) Kalkman (bark extracts) and Harrisonia abyssinica Oliv. extracts (bark extracts): a comparative study. J. Med. Plants Econ. Dev. (2018). https://doi.org/10.4102/jomped.v2i1.39

    Article  Google Scholar 

  25. E.S. Madivoli, P.G. Kareru, E.G. Maina, A.O. Nyabola, S.I. Wanakai, J.O. Nyang’au, Biosynthesis of iron nanoparticles using Ageratum conyzoides extracts, their antimicrobial and photocatalytic activity. SN Appl. Sci. 1, 1–9 (2019). https://doi.org/10.1007/s42452-019-0511-7

    Article  CAS  Google Scholar 

  26. C. Ponce, J. Chanona, V. Garibay, E. Palacios, G. Calderon, R. Sabo, Functionalization of agave cellulose nanoparticles and its characterization by microscopy and spectroscopy techniques. Microsc. Microanal. 19, 200–201 (2013). https://doi.org/10.1017/s1431927613002997

    Article  Google Scholar 

  27. L. Katata-Seru, T. Moremedi, O.S. Aremu, I. Bahadur, Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: removal of nitrate from water and antibacterial activity against Escherichia coli. J. Mol. Liq. 256, 296–304 (2018). https://doi.org/10.1016/j.molliq.2017.11.093

    Article  CAS  Google Scholar 

  28. Z. Wang, C. Fang, M. Megharaj, Characterization of iron-polyphenol nanoparticles synthesized by three plant extracts and their fenton oxidation of azo dye. ACS Sustain. Chem. Eng. 2, 1022–1025 (2014). https://doi.org/10.1021/sc500021n

    Article  CAS  Google Scholar 

  29. R.S. Odhiambo, K.G. Patrick, K.L. Helen, N.C. Gathu, F. Kimani, W.R. Waithaka, C. Kipyegon, Antibacterial activity of ethanolic extracts of Prosopis juliflora against gram negative bacteria. Eur. J. Exp. Biol. 5, 43–46 (2015)

    CAS  Google Scholar 

  30. M. Ndikau, N.M. Noah, D.M. Andala, E. Masika, Green synthesis and characterization of silver nanoparticles using Citrullus lanatus fruit rind extract. Int. J. Anal. Chem. (2017). https://doi.org/10.1155/2017/8108504

    Article  PubMed  PubMed Central  Google Scholar 

  31. N. Barrera, L. Guerrero, A. Debut, P. Santa-Cruz, Printable nanocomposites of polymers and silver nanoparticles for antibacterial devices produced by DoD technology. PLoS ONE 13, e0200918 (2018). https://doi.org/10.1371/journal.pone.0200918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. E.R. Carmona, N. Benito, T. Plaza, G. Recio-Sánchez, Green synthesis of silver nanoparticles by using leaf extracts from the endemic Buddleja globosa hope. Green Chem. Lett. Rev. 10, 250–256 (2017). https://doi.org/10.1080/17518253.2017.1360400

    Article  CAS  Google Scholar 

  33. A. Verma, M.S. Mehata, Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J. Radiat. Res. Appl. Sci. 9, 109–115 (2016). https://doi.org/10.1016/j.jrras.2015.11.001

    Article  CAS  Google Scholar 

  34. P. Balashanmugam, P.T. Kalaichelvan, Biosynthesis characterization of silver nanoparticles using Cassia roxburghii DC. aqueous extract, and coated on cotton cloth for effective antibacterial activity. Int. J. Nanomed. 10, 87–97 (2015). https://doi.org/10.2147/IJN.S79984

    Article  CAS  Google Scholar 

  35. M. Vanaja, K. Paulkumar, M. Baburaja, S. Rajeshkumar, G. Gnanajobitha, C. Malarkodi, M. Sivakavinesan, G. Annadurai, Degradation of methylene blue using biologically synthesized silver nanoparticles. Bioinorg. Chem. Appl. (2014). https://doi.org/10.1155/2014/742346

    Article  PubMed  PubMed Central  Google Scholar 

  36. K. Jyoti, M. Baunthiyal, A. Singh, Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 9, 217–227 (2016). https://doi.org/10.1016/j.jrras.2015.10.002

    Article  CAS  Google Scholar 

  37. B. Kumar, K. Smita, L. Cumbal, A. Debut, Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J. Biol. Sci. 24, 45–50 (2017). https://doi.org/10.1016/j.sjbs.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  38. A. Rautela, J. Rani, M. Debnath(Das), Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. J. Anal. Sci. Technol. 10, 1–10 (2019). https://doi.org/10.1186/s40543-018-0163-z

    Article  Google Scholar 

  39. K. Anandalakshmi, J. Venugobal, V. Ramasamy, Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci. 6, 399–408 (2016). https://doi.org/10.1007/s13204-015-0449-z

    Article  CAS  Google Scholar 

  40. C.H.N. de Barros, G.C.F. Cruz, W. Mayrink, L. Tasic, Bio-based synthesis of silver nanoparticles from orange waste: effects of distinct biomolecule coatings on size, morphology, and antimicrobial activity. Nanotechnol. Sci. Appl. (2018). https://doi.org/10.2147/NSA.S156115

    Article  PubMed  PubMed Central  Google Scholar 

  41. A.K. Jha, K. Prasad, Green synthesis of silver nanoparticles using Cycas leaf. Int. J. Green Nanotechnol. Phys. Chem. 1, 110–117 (2010). https://doi.org/10.1080/19430871003684572

    Article  Google Scholar 

  42. S. Baset, H. Akbari, H. Zeynali, M. Shafie, Size measurement of metal and semiconductor nanoparticles via UV–Vis absorption spectra. Dig. J. Nanomater. Biostruct. 6, 709–716 (2011)

    Google Scholar 

  43. Z. Kanwal, M.A. Raza, S. Riaz, S. Manzoor, A. Tayyeb, I. Sajid, S. Naseem, Synthesis and characterization of silver nanoparticle-decorated cobalt nanocomposites (Co@AgNPs) and their density-dependent antibacterial activity. R. Soc. Open Sci. 6, 1–15 (2019). https://doi.org/10.1098/rsos.182135

    Article  CAS  Google Scholar 

  44. P. Logeswari, S. Silambarasan, J. Abraham, Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J. Saudi Chem. Soc. 19, 311–317 (2015). https://doi.org/10.1016/j.jscs.2012.04.007

    Article  Google Scholar 

  45. S. Groiss, R. Selvaraj, T. Varadavenkatesan, R. Vinayagam, Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora. J. Mol. Struct. (2017). https://doi.org/10.1016/j.molstruc.2016.09.031

    Article  Google Scholar 

  46. E. Bernardo-Mazariegos, B. Valdez-Salas, D. González-Mendoza, A. Abdelmoteleb, O. Tzintzun Camacho, C. Ceceña Duran, F. Gutiérrez-Miceli, Silver nanoparticles from Justicia spicigera and their antimicrobial potentialities in the biocontrol of foodborne bacteria and phytopathogenic fungi. Rev. Argent. Microbiol. 51, 103–109 (2019). https://doi.org/10.1016/j.ram.2018.05.002

    Article  PubMed  Google Scholar 

  47. F.E.A. Meva, A.A. Ntoumba, P.B.E. Kedi, E. Tchoumbi, A. Schmitz, L. Schmolke, M. Klopotowski, B. Moll, Ü. Kökcam-Demir, E.A. MpondoMpondo, L.G. Lehman, C. Janiak, Silver and palladium nanoparticles produced using a plant extract as reducing agent, stabilized with an ionic liquid: sizing by X-ray powder diffraction and dynamic light scattering. J. Mater. Res. Technol. 8, 1991–2000 (2019). https://doi.org/10.1016/j.jmrt.2018.12.017

    Article  CAS  Google Scholar 

  48. N. Alshaye, M. Elobeid, D. Alkhalifah, A. Mohammed, Characterization of biogenic silver nanoparticles by Salvadora persica leaves extract and its application against some MDR pathogens E. coli and S. aureus. Res. J. Microbiol. 12, 74–81 (2016). https://doi.org/10.3923/jm.2017.74.81

    Article  CAS  Google Scholar 

  49. A.V. Ramesh, D.R. Devi, G.R. Battu, K. Basavaiah, A Facile plant mediated synthesis of silver nanoparticles using an aqueous leaf extract of Ficus hispida Linn. F. for catalytic, antioxidant and antibacterial applications. S. Afr. J. Chem. Eng. 26, 25–34 (2018). https://doi.org/10.1016/j.sajce.2018.07.001

    Article  Google Scholar 

  50. C. Krishnaraj, E.G. Jagan, S. Rajasekar, P. Selvakumar, P.T. Kalaichelvan, N. Mohan, Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B Biointerfaces. 76, 50–56 (2010). https://doi.org/10.1016/j.colsurfb.2009.10.008

    Article  CAS  PubMed  Google Scholar 

  51. R.B. Malabadi, G.S. Mulgund, N.T. Meti, K. Nataraja, S. Vijaya Kumar, Antibacterial activity of silver nanoparticles synthesized by using whole plant extracts of Clitoria ternatea. Res. Pharm. 2, 10–21 (2012)

    CAS  Google Scholar 

  52. M. Parthibavarman, S. Bhuvaneshwari, M. Jayashree, R. BoopathiRaja, Green synthesis of silver (Ag) nanoparticles using extract of apple and grape and with enhanced visible light photocatalytic activity. Bionanoscience. 9, 423–432 (2019). https://doi.org/10.1007/s12668-019-0605-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Nyabola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyabola, A.O., Kareru, P.G., Madivoli, E.S. et al. Formation of Silver Nanoparticles via Aspilia pluriseta Extracts Their Antimicrobial and Catalytic Activity. J Inorg Organomet Polym 30, 3493–3501 (2020). https://doi.org/10.1007/s10904-020-01497-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01497-7

Keywords

Navigation