Skip to main content
Log in

Gentamicin Loaded Zn2(bdc)2(dabco) Frameworks as Efficient Materials for Drug Delivery and Antibacterial Activity

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

New drug delivery systems are very helpful in diagnosis and treatment of diseases through controlled and targeted drug delivery. They can increase bioavailability of drugs and reduce their side effects. Metal–organic frameworks (MOFs) are alternative drug delivery systems, which are suitable for targeted drug delivery due to their adjustable pore sizes and compatibility by adding some functional groups. Application of these compounds permits simultaneous use of several advantages including biocompatibility, the ability to absorb large amounts of drugs and control drug release. The present study was designed to provide Zn2(bdc)2(dabco) MOF and evaluate its performance in absorbing and releasing gentamicin. Characterization methods, such as FTIR, XRD, SEM, BET, UV–Vis spectroscopy and TGA, were employed to characterize the gentamicin-loaded Zn2(bdc)2(dabco) structure. The amount of drug release from Zn2(bdc)2(dabco) was measured in buffer solutions with 7.4 and 5.0 pHs. Furthermore, antibacterial properties of the drug, MOF and drug-loaded MOF have been investigated against Gram-positive and Gram-negative bacteria. This study shows the potential of using Zn2(bdc)2(dabco) frameworks for controlled release of antibiotic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Peer et al., Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007)

    Article  CAS  Google Scholar 

  2. P. Couvreur, R. Gref, K. Andrieux, C. Malvy, Nanotechnology for drug delivery: applications to cancer and autoimmune diseases. Prog. Solid State Chem. 34, 231–235 (2006)

    Article  CAS  Google Scholar 

  3. R. Gref et al., Biodegradable long-circulating polymeric nanospheres. Science 263, 1600–1603 (1994)

    Article  CAS  Google Scholar 

  4. A. Gabizon, Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin. Cancer Res. 7, 223–225 (2001)

    CAS  Google Scholar 

  5. A. Sheikh Hasan et al., Effect of the microencapsulation of nanoparticles on the reduction of burst release. Int. J. Pharm. 344, 53–61 (2007)

    Article  Google Scholar 

  6. H. Nabipour, M. Hossaini Sadr, Layered zinc hydroxide-ibuprofen nanohybrids: synthesis and characterization. Bull. Mater. Sci. 38(6), 1561–1568 (2015)

    Article  CAS  Google Scholar 

  7. H. Nabipour, M. Hossaini Sadr, N. Thomas, Synthesis, controlled release and antibacterial studies of nalidixic acid-zinc hydroxide nitrate nanocomposites. New J. Chem. 40, 238–244 (2016)

    Article  CAS  Google Scholar 

  8. H. Nabipour, M. Hossaini Sadr, B. Soltani, Synthesis, identification and in vitro drug release of layered zinc hydroxide-gemifloxacin nanohybrids. J. Incl. Phenom. Macrocycl. Chem 85(3), 261–269 (2016)

    Article  CAS  Google Scholar 

  9. H. Nabipour, M. Hossaini Sadr, Controlled release of diclofenac, an anti-inflammatory drug by nanocompositing with layered zinc hydroxide. J. Porous Mater. 22, 447 (2015)

    Article  CAS  Google Scholar 

  10. H. Nabipour, M. Hossaini Sadr, N. Thomas, Synthesis, characterisation and sustained release properties of layered zinc hydroxide intercalated with amoxicillin trihydrate. J. Exp. Nanosci. 10(16), 1269–1284 (2015)

    Article  CAS  Google Scholar 

  11. B. Soltani, H. Nabipour, N. Ahmadi Nasab, Fabrication, controlled release and kinetic studies of indomethacin—layered zinc hydroxide nanohybrid and its effect on viability of HFFF2. J. Dispersion Sci. Technol. (2017). https://doi.org/10.1080/01932691.2017.1388178

    Google Scholar 

  12. M. Hassan, E. Haque, K.R. Reddy, A.I. Minett, J. Chen, V.G. Gomes, Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale 6, 11988–11994 (2014)

    Article  CAS  Google Scholar 

  13. R. Kakarla Raghava, G.G. Vincent, H. Mahbub, Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Mater. Res. Express 1, 015012 (2014)

    Article  Google Scholar 

  14. K.R. Reddy, M. Hassan, V.G. Gomes, Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl. Catal. A 489, 1–16 (2015)

    Article  CAS  Google Scholar 

  15. K.R. Reddy, K.-P. Lee, A.I. Gopalan, Self-assembly directed synthesis of poly (ortho-toluidine)-metal (gold and palladium) composite nanospheres. J. Nanosci. Nanotechnol. 7, 3117–3125 (2007)

    Article  CAS  Google Scholar 

  16. K.R. Reddy, K.-P. Lee, A.I. Gopalan, M.S. Kim, A.M. Showkat, Y.C. Nho, Synthesis of metal (Fe or Pd)/alloy (Fe–Pd)-nanoparticles-embedded multiwall carbon nanotube/sulfonated polyaniline composites by γ irradiation. J. Polym. Sci. A 44, 3355–3364 (2006)

    Article  CAS  Google Scholar 

  17. M.L. Hu, V. Safarifard, E. Doustkhah, S. Rostamnia, A. Morsali, N. Nouruzi, S. Beheshti, K. Akhbari, Taking organic reactions over metal-organic frameworks as heterogeneous catalysis. Microporous Mesoporous Mater. 256, 111–127 (2018)

    Article  CAS  Google Scholar 

  18. S. Rostamnia, H. Alamgholiloo, M. Jafari, R. Rookhosh, A.R. Abbasi, Synthesis and catalytic study of open metal site metal–organic frameworks of Cu3(BTC)2 microbelts in selective organic sulfide oxidation. Appl. Organometal. Chem. 30, 954–958 (2016)

    Article  CAS  Google Scholar 

  19. S. Rostamnia, H. Alamgholiloo, X. Liu, Pd-grafted open metal site copper-benzene-1,4-dicarboxylate metal organic frameworks (Cu-BDC MOF’s) as promising interfacial catalysts for sustainable Suzuki coupling. J. Colloid Interface Sci. 469, 310–317 (2016)

    Article  CAS  Google Scholar 

  20. S. Rostamnia, H. Hongchuan Xin, Basic isoreticular metal–organic framework (IRMOF-3) porous nanomaterial as a suitable and green catalyst for selective unsymmetrical Hantzschcoupling reaction. Appl. Organomet. Chem. 28, 359–363 (2014)

    Article  CAS  Google Scholar 

  21. P. Horcajada et al., Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45, 5974–5978 (2006)

    Article  Google Scholar 

  22. P. Horcajada et al., Flexible porous metal–organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 130, 6774–6780 (2008)

    Article  Google Scholar 

  23. H. Furukawa, U. Muller, O.M. Yaghi, Heterogeneity within order” in metal-organic frameworks. Angew. Chem. Int. Ed. 54, 3417–3430 (2015)

    Article  CAS  Google Scholar 

  24. Q. Zhang, J.M. Shreeve, Metal–organic frameworks as high explosives: a new concept for energetic materials. Angew. Chem. Int. Ed. 53, 2540–2542 (2014)

    Article  CAS  Google Scholar 

  25. H. Nabipour, M. Hossaini Sadr, G. Rezanejad Bardajee, Synthesis and characterization of nanoscale zeolitic imidazolate frameworks with ciprofloxacin and their applications as antimicrobial agents. New J. Chem. 41, 7364–7370 (2017)

    Article  CAS  Google Scholar 

  26. H. Nabipour, M. Hossaini Sadr, Gh. Rezanejad Bardajee. Release behavior, kinetic and antimicrobial study of nalidixic acid from [Zn2(bdc)2(dabco)]metal organic frameworks. J. Coord. Chem. 70, 1–24 (2017)

    Article  Google Scholar 

  27. T. Slattery et al., Graft-rejection and toxicity following bone marrow transplantation in relation to busulfan pharmacokinetics. Bone Marrow Transplant. 16, 31–42 (1995)

    CAS  Google Scholar 

  28. P. Horcajada et al., Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9, 172–178 (2010)

    Article  CAS  Google Scholar 

  29. I.M.P. Silva et al., Enhanced performance of a metal-organic framework analogue to MIL-101(Cr) containing amine groups for ibuprofen and nimesulide controlled release. Inorg. Chem. Commun. 70, 47–50 (2016)

    Article  CAS  Google Scholar 

  30. D.N. Dybtsev, H. Chun, K. Kim, Rigid and flexible: a highly porous metal–organic framework with unusual guest-dependent dynamic behavior. Angew. Chem. Int. Ed. 43, 5033 (2004)

    Article  CAS  Google Scholar 

  31. K. Uemura et al., Two-step adsorption/desorption on a jungle-gym-type porous coordination polymer. Angew. Chem. Int. Ed. 46, 6662 (2007)

    Article  CAS  Google Scholar 

  32. N. Motakef-Kazemi, S.A. Shojaosadati, A. Morsali, In situ synthesis of a drug-loaded MOF at room temperature. Microporous Mesoporous Mater. 186, 73 (2014)

    Article  CAS  Google Scholar 

  33. N. Manjunatha, S. Vasanti, N. Rajesh, N. Uma, Formulation and evaluation of biopolymer based microspheres for nasal drug delivery. Int. J. PharmTech Res. 2(1), 856 (2010)

    CAS  Google Scholar 

  34. B. Soltani, H. Nabipour, N. Ahamdi Nasab, Efficient storage of gentamicin in nanoscale zeolitic imidazolate framework-8 nanocarrier for pH-responsive drug release. J. Inorg. Organomet. Polym. Mater. (2017). https://doi.org/10.1007/s10904-017-0745-z

    Google Scholar 

  35. A.L. Doadrio, E.M. Sousa, J.C. Doadrio, J. Pérez Pariente, I. Izquierdo-Barba, M. Vallet-Regí, Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. J. Control. Release 97(1), 125–132 (2004)

    Article  CAS  Google Scholar 

  36. M. Changez, K. Burugapalli, V. Koul, V. Choudhary, The effect of composition of poly(acrylic acid)-gelatin hydrogel on gentamicin sulphate release: in vitro. Biomaterials 24(4), 527–536 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by Azarbaijan Shahid Madani University under the grant number 96/603.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hafezeh Nabipour or Behzad Soltani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabipour, H., Soltani, B. & Ahmadi Nasab, N. Gentamicin Loaded Zn2(bdc)2(dabco) Frameworks as Efficient Materials for Drug Delivery and Antibacterial Activity. J Inorg Organomet Polym 28, 1206–1213 (2018). https://doi.org/10.1007/s10904-018-0781-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0781-3

Keywords

Navigation