Skip to main content
Log in

Neural Correlates of Pathological Gamblers Preference for Immediate Rewards During the Iowa Gambling Task: An fMRI Study

  • Original Paper
  • Published:
Journal of Gambling Studies Aims and scope Submit manuscript

Abstract

The Iowa Gambling Task (IGT) involves exploratory learning via rewards and penalties, where most advantageous task performance requires subjects to forego potential large immediate rewards for small longer-term rewards to avoid larger punishments. Pathological gambling (PG) subjects perform worse on the IGT compared to controls, relating to their persistence at high risk decisions involving the continued choice of potential large immediate rewards despite experiencing larger punishments. We wished to determine if neural processing of risk and reward within striatal and frontal cortex is associated with this behaviour observed in PG. Functional magnetic resonance imaging (fMRI) was used to assess brain activity in response to a computerized version of the IGT. Thirteen male PG subjects with no active comorbidities were compared to 13 demographically matched control subjects. In agreement with previous behavioural studies, PG subjects performed worse on the IGT and made more high-risk choices compared to controls, particularly after experiencing wins and losses. During high-risk gambling decisions, fMRI demonstrated that PG subjects exhibited relatively increased frontal lobe and basal ganglia activation, particularly involving the orbitofrontal cortex (OFC), caudate and amygdala. Increased activation of regions encompassing the extended reward pathway in PG subjects during high risk choices suggests that the persistence of PG may be due to the increased salience of immediate and greater potential monetary rewards relative to lower monetary rewards or potential future losses. Whether this over activation of the reward pathway is associated with the development of PG warrants further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • American Psychiatric Association. (2003). Diagnostic and statistical manual of mental disorders, 4th edn. Text Revision. Washington, DC: American Psychiatric Association.

  • Babor, T. F., Brown, J., & DelBoca, F. K. (1990). Validity of self-reports in applied research on addictive behaviors: Fact or fiction? Behavioral Assessment, 12, 5–31.

    Google Scholar 

  • Ballard, K., & Knutson, B. (2009). Dissociable neural representations of future reward magnitude and delay during temporal discounting. Neuroimage, 45, 143–150.

    Article  Google Scholar 

  • Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15.

    Article  CAS  Google Scholar 

  • Bechara, A., Damasio, H., Damasio, A. R., & Lee, G. P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, 19, 5473–5481.

    CAS  Google Scholar 

  • Bechara, A., Damasio, H., Tranel, D., & Anderson, S. W. (1998). Dissociation of working memory from decision making within the human prefrontal cortex. Journal of Neuroscience, 18, 428–437.

    CAS  Google Scholar 

  • Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275, 1293–1295.

    Article  CAS  Google Scholar 

  • Bechara, A., Dolan, S., Denburg, N., Hindes, A., Anderson, S. W., & Nathan, P. E. (2001). Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia, 39, 376–389.

    Article  CAS  Google Scholar 

  • Bechara, A., Dolan, S., & Hindes, A. (2002). Decision-making and addiction (part II): Myopia for the future or hypersensitivity to reward? Neuropsychologia, 40, 1690–1705.

    Article  Google Scholar 

  • Bechara, A., & Martin, E. (2004). Impaired decision-making related to working memory deficits in substance addicts. Neuropsychology, 18, 152–162.

    Article  Google Scholar 

  • Bolla, K., Eldreth, D., London, E. D., Kiehl, K. A., Mouratidis, M., Contoreggi, C., et al. (2003). Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage, 19, 1085–1094.

    Article  CAS  Google Scholar 

  • Breiter, H. C., Aharon, I., Kahneman, D., Dale, A., & Shizgal, P. (2001). Functional imaging of neural responses to expectancy and experience at monetary gains and losses. Neuron, 30, 619–639.

    Article  CAS  Google Scholar 

  • Brewer, J. A., & Potenza, M. N. (2008). The neurobiology and genetics of impulse control disorders: Relationships to drug addictions. Biochemical Pharmacology, 7(5), 63–75.

    Article  Google Scholar 

  • Busemeyer, J. R., & Stout, J. C. (2002). A contribution of cognitive decision models to clinical assessment: Decomposing performance on the Bechara gambling task. Psychological Assessment, 14, 253–262.

    Article  Google Scholar 

  • Cavedini, P., Riboldi, G., Keller, R., D’Annucci, A., & Bellodi, L. (2002). Frontal lobe dysfunction in pathological gambling patients. Biological Psychiatry, 51, 334–341.

    Article  Google Scholar 

  • Crockford, D. N., Goodyear, B., Edwards, J., Quickfall, J., & el-Guebaly, N. (2005). Cue-induced brain activity in pathological gamblers. Biological Psychiatry, 58, 787–795.

    Article  Google Scholar 

  • Delgado, M. R., Nystrom, L. E., Fissell, C., Noll, D. C., & Fiez, J. A. (2000). Tracking the hemodynamic response to reward and punishment in the striatum. Journal of Neurophysiology, 84, 3072–3077.

    CAS  Google Scholar 

  • Elliott, R., Newman, J. L., Longe, O. A., & Deakin, J. F. (2003). Differential response patterns in the striatum and orbitofrontal cortex to financial reward in humans: A parametric functional magnetic resonance imaging study. Journal of Neuroscience, 23, 303–307.

    CAS  Google Scholar 

  • Ernst, M., Bolla, K., Mouratidis, M., Contoreggi, C., Matochik, J. A., Kurian, V., et al. (2002). Decision-making in a risk-taking task: A PET study. Neuropsychopharmacology, 26(5), 682–691.

    Article  Google Scholar 

  • Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nature Neuroscience, 8, 11.

    Article  Google Scholar 

  • First, M. B., Spitzer, R. L., Gibbon, M., & William, J. B. W. (1988). Structured clinical iInterview for DSM-IV aAxis I disorders–patient edition (SCID-I/P, version 2.0). New York: Biometrics Research Department, New York State Psychiatric Institute.

    Google Scholar 

  • Forbush, K. T., Shaw, M., Graeber, M. A., Hovick, L., Meyer, V. J., Moser, D. J., et al. (2008). Neuropsychological characteristics and personality traits in pathological gambling. CNS Spectrums, 13, 306–315.

    Google Scholar 

  • Fukui, H., Murai, T., Fukuyama, H., Hayashi, T., & Hanakawa, T. (2005). Functional activity related to risk anticipation during performance of the Iowa gambling task. Neuroimage, 24, 253–259.

    Article  Google Scholar 

  • Goldstein, R. Z., & Volkow, N. D. (2002). Drug addiction and its underlying neurobiological basis: Neuroimaging evidence for the involvement of the frontal cortex. American Journal of Psychiatry, 159, 1642–1652.

    Article  Google Scholar 

  • Goudriaan, A., Oosterlaan, J., Beursc, E., & Van den Brink, W. (2004). Pathological gambling: A comprehensive review of biobehavioral findings. Neuroscience and Biobehavioral Reviews, 28, 123–141.

    Article  Google Scholar 

  • Goudriaan, A., Oosterlaan, J., de Beurs, E., & van den Brink, W. (2006a). Neurocognitive functions in pathological gambling: A comparison with alcohol dependence, Tourette syndrome and normal controls. Addiction, 101, 534–547.

    Article  Google Scholar 

  • Goudriaan, A., Oosterlaan, J., de Beurs, E., & van den Brink, W. (2006b). Psychophysiological determinants and concomitants of deficient decision making in pathological gamblers. Drug and Alcohol Dependence, 84, 231–239.

    Article  Google Scholar 

  • Grant, S., Contoreggi, C., & London, E. D. (2000). Drug abusers show impaired performance on a laboratory test of decision-making. Neuropsycholgia, 38, 1180–1187.

    Article  CAS  Google Scholar 

  • Grant, J. E., Steinberg, M. A., Kim, S. W., Rounsaville, B. J., & Potenza, M. N. (2004). Preliminary validity and reliability testing of a structured clinical interview for pathological gambling. Psychiatry Research, 128, 79–88.

    Article  Google Scholar 

  • Heatherton, T. F., Kozlowski, L. T., Frecker, R. C., & Fagerstrom, K. O. (1991). The Fagerstrom test for nicotine dependence: A revision of the Fagerstrom tolerance questionnaire. British Journal of Addiction, 86, 1119–1127.

    Article  CAS  Google Scholar 

  • Hollander, E., Pallanti, S., Baldini Rossi, N., Sood, E., Baker, B. R., & Buchsbaum, M. S. (2005). Imaging monetary reward in pathological gamblers. World Journal of Biological Psychiatry, 6(2), 113–120.

    Article  Google Scholar 

  • Kalivas, P. W., & Volkow, N. D. (2005). The neural basis of addiction: A pathology of motivation and choice. American Journal of Psychiatry, 162, 03–13.

    Article  Google Scholar 

  • Knutson, B., Fong, G. W., Bennett, S. M., Adams, C. M., & Hommer, D. (2003). A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: Characterization with rapid event related fMRI. Neuroimage, 18, 263–272.

    Article  Google Scholar 

  • Koob, G. (2007). The neurobiology of addiction: A neuroadaptational view relevant for diagnosis. Addiction, 101(Suppl 1), 23–30.

    Google Scholar 

  • Lakey, C. E., Goodie, A. S., & Campbell, W. K. (2007). Frequent card playing and pathological gambling: The utility of the Georgia gambling task and the Iowa gambling task for predicting pathology. Journal of Gambling Studies, 23, 285–297.

    Article  Google Scholar 

  • Lesieur, H. R., & Blume, S. B. (1987). The South Oaks Gambling Screen (SOGS): A new instrument for the identification of pathological gamblers. American Journal of Psychiatry, 144, 1184–1188.

    CAS  Google Scholar 

  • Li, X., Lu, Z. L., D’Arbembeau, A., Ng, M., & Bechara, A. (2010). The Iowa Gambling Task in fMRI images. Human Brain Mapping, 31, 410–423.

    CAS  Google Scholar 

  • Linnet, J., Moller, A., Peterson, E., Gjedde, A., & Doudet, D. (2010). Dopamine release in ventral striatum during Iowa gambling task performance is associated with increased excitement levels in pathological gambling. Addiction, 106, 383–390.

    Article  Google Scholar 

  • Linnet, J., Moller, A., Peterson, E., Gjedde, A., & Doudet, D. (2011). Inverse association between dopaminergic neurotransmission and Iowa gambling task performance in pathological gamblers and healthy controls. Scandinavian Journal of Psychology, 52, 28–34.

    Article  Google Scholar 

  • Linnet, J., Rojskjaer, S., Nygaard, J., & Maher, B. A. (2006). Episodic chasing in pathological gamblers using the Iowa gambling task. Scandinavian Journal of Psychology, 47, 43–49.

    Article  Google Scholar 

  • McClure, S. M., York, M. K., & Montague, P. R. (2004). The neural substrates of reward processing in humans: The modern role of fMRI. Neuroscientist, 10, 260–268.

    Article  Google Scholar 

  • Petry, N. M. (2001). Pathological gamblers, with and without substance use disorders, discount delayed rewards at high rates. Journal of Abnormal Psychology, 110, 482–487.

    Article  CAS  Google Scholar 

  • Petry, N. M. (2005). Pathological gambling: Etiology, comorbidity, and treatments. Washington, DC: American Psychological Association.

    Book  Google Scholar 

  • Pomerleau, C. S., Carton, S. M., Lutzke, M. L., Flessland, K. A., & Pomerleau, O. F. (1994). Reliability of the Fagerstrom tolerance questionnaire and the Fagerstrom test for nicotine dependence. Addictive Behaviors, 19, 33–39.

    Article  CAS  Google Scholar 

  • Potenza, M. N. (2006). Should addictive disorders include non-substance related conditions? Addiction, 101(Suppl 1), 142–151.

    Article  Google Scholar 

  • Potenza, N. M. (2008). The neurobiology of pathological gambling and drug addiction: An overview and new findings. Philosophical Transactions of the Royal Society B, 363, 3181–3189.

    Article  Google Scholar 

  • Potenza, M. N., Leung, H. C., Blumberg, H. P., Peterson, B. S., Fulbright, R. K., Lacadie, C. M., et al. (2003a). An fMRI Stroop task study of ventromedial prefrontal cortical function in pathological gamblers. American Journal of Psychiatry, 160(11), 1990–1994.

    Article  Google Scholar 

  • Potenza, M. N., Steinberg, M. A., Skudlarski, P., Fulbright, R. K., Lacadie, C. M., Wilber, M. K., et al. (2003b). Gambling urges in pathological gambling: A functional magnetic resonance imaging study. Archives of General Psychiatry, 60(8), 828–836.

    Article  Google Scholar 

  • Reuter, J., Raedler, T., Rose, M., Hand, I., Glascher, J., & Buchel, C. (2005). Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nature Neuroscience, 8(2), 147–148.

    Article  CAS  Google Scholar 

  • Roca, M., Torralva, T., Lopez, P., Cetkovitch, M., Clark, L., & Manes, F. (2008). Executive functions in pathologic gamblers selected in an ecologic setting. Cognitive and Behavioral Neurology, 21, 1–4.

    Article  Google Scholar 

  • Rolls, E. T. (2000). The orbitofrontal cortex and reward. Cerebral Cortex, 10, 284–294.

    Article  CAS  Google Scholar 

  • Tanabe, J., Thompson, L., Claus, E., Dalwani, M., Hutchison, K., & Banish, M. (2007). Prefrontal cortex activity is reduced in gambling and nongambling substance users during decision making. Human Brain Mapping, 28, 1276–1286.

    Article  Google Scholar 

  • van Holst, R. J., van den Brink, W., Veltman, D. J., & Goudriaan, A. E. (2010). Why gamblers fail to win: A review of cognitive and neuroimaging findings in pathological gambling. Neuroscience and Biobehavioral Reviews, 34, 87–107.

    Article  Google Scholar 

  • Verdejo-Garcia, A., Benbrook, A., Funderburk, F., David, P., Cadet, J. L., & Bolla, K. I. (2007). The differential relationship between cocaine use and marijuana use on decision-making performance over repeat testing with the Iowa gambling task. Drug and Alcohol Dependence, 90, 2–11.

    Article  Google Scholar 

  • Zink, C. F., Pagnoni, G., Martin-Skurski, M. E., Chappelow, J. C., & Berns, G. S. (2004). Human striatal responses to monetary reward depend on saliency. Neuron, 42, 509–517.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for the study was provided by the Alberta Gaming Research Institute. We would also like to acknowledge Daniel Pittman for technical help in developing the IGT task for fMRI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Crockford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Power, Y., Goodyear, B. & Crockford, D. Neural Correlates of Pathological Gamblers Preference for Immediate Rewards During the Iowa Gambling Task: An fMRI Study. J Gambl Stud 28, 623–636 (2012). https://doi.org/10.1007/s10899-011-9278-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10899-011-9278-5

Keywords

Navigation