Skip to main content
Log in

Faster algorithms for sparse ILP and hypergraph multi-packing/multi-cover problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In our paper, we consider the following general problems: check feasibility, count the number of feasible solutions, find an optimal solution, and count the number of optimal solutions in \({{\,\mathrm{\mathcal {P}}\,}}\cap {{\,\mathrm{\mathbb {Z}}\,}}^n\), assuming that \({{\,\mathrm{\mathcal {P}}\,}}\) is a polyhedron, defined by systems \(A x \le b\) or \(Ax = b,\, x \ge 0\) with a sparse matrix A. We develop algorithms for these problems that outperform state-of-the-art ILP and counting algorithms on sparse instances with bounded elements in terms of the computational complexity. Assuming that the matrix A has bounded elements, our complexity bounds have the form \(s^{O(n)}\), where s is the minimum between numbers of non-zeroes in columns and rows of A, respectively. For \(s = o\bigl (\log n \bigr )\), this bound outperforms the state-of-the-art ILP feasibility complexity bound \((\log n)^{O(n)}\), due to Reis & Rothvoss (in: 2023 IEEE 64th Annual symposium on foundations of computer science (FOCS), IEEE, pp. 974–988). For \(s = \phi ^{o(\log n)}\), where \(\phi \) denotes the input bit-encoding length, it outperforms the state-of-the-art ILP counting complexity bound \(\phi ^{O(n \log n)}\), due to Barvinok et al. (in: Proceedings of 1993 IEEE 34th annual foundations of computer science, pp. 566–572, https://doi.org/10.1109/SFCS.1993.366830, 1993), Dyer, Kannan (Math Oper Res 22(3):545–549, https://doi.org/10.1287/moor.22.3.545, 1997), Barvinok, Pommersheim (Algebr Combin 38:91–147, 1999), Barvinok (in: European Mathematical Society, ETH-Zentrum, Zurich, 2008). We use known and new methods to develop new exponential algorithms for Edge/Vertex Multi-Packing/Multi-Cover Problems on graphs and hypergraphs. This framework consists of many different problems, such as the Stable Multi-set, Vertex Multi-cover, Dominating Multi-set, Set Multi-cover, Multi-set Multi-cover, and Hypergraph Multi-matching problems, which are natural generalizations of the standard Stable Set, Vertex Cover, Dominating Set, Set Cover, and Maximum Matching problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

The manuscript has no associated data.

Notes

  1. The notation \(\phi = {{\,\textrm{size}\,}}(A,b,c)\) denotes the input bit-encoding length.

  2. For simplicity reasons, we assume that \({{\,\mathrm{\mathcal {P}}\,}}\) is bounded here. The unbounded case can be easily handled, see the proof of Theorem 3, e.g.

  3. Saying "integrally equivalent" we mean that the sets of integer solutions of both systems are connected by a bijective unimodular map.

  4. The words "modulo polyhedra with lines" mean that the sum can contain additional terms of the form \([{{\,\mathrm{\mathcal {M}}\,}}]\), where \({{\,\mathrm{\mathcal {M}}\,}}\) is a polyhedron with lines.

References

  1. Dadush, D.: Integer programming, lattice algorithms, and deterministic volume estimation. Georgia Institute of Technology, ProQuest Dissertations Publishing, Ann Arbor (2012)

  2. Dadush, D., Peikert, C., Vempala, S.: Enumerative lattice algorithms in any norm via m-ellipsoid coverings. In: 2011 IEEE 52nd annual symposium on foundations of computer science, pp. 580–589 (2011). https://doi.org/10.1109/FOCS.2011.31

  3. Dadush, D.: On approximating the covering radius and finding dense lattice subspaces. In: Proceedings of the 51st Annual ACM SIGACT symposium on theory of computing, pp. 1021–1026 (2019). https://doi.org/10.1145/3313276.3316397

  4. Regev, O., Stephens-Davidowitz, N.: A reverse minkowski theorem. In: Proceedings of the 49th Annual ACM SIGACT symposium on theory of computing, pp. 941–953 (2017)

  5. Reis, V., Rothvoss, T.: The subspace flatness conjecture and faster integer programming. In: 2023 IEEE 64th Annual symposium on foundations of computer science (FOCS), IEEE. pp. 974–988 (2023)

  6. Basu, A., Oertel, T.: Centerpoints: a link between optimization and convex geometry. SIAM J. Optim. 27(2), 866–889 (2017). https://doi.org/10.1137/16M1092908

    Article  MathSciNet  Google Scholar 

  7. Chirkov, Y.A., Gribanov, V.D., Malyshev, S.D., Pardalos, M.P., Veselov, I.S., Zolotykh, Y.N.: On the complexity of quasiconvex integer minimization problem. J. Global Optim. 73(4), 761–788 (2019). https://doi.org/10.1007/s10898-018-0729-8

    Article  MathSciNet  Google Scholar 

  8. Gribanov, D.V., Malyshev, D.S.: Integer conic function minimization based on the comparison oracle. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds.) Mathematical optimization theory and operations research, pp. 218–231. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22629-9_16

    Chapter  Google Scholar 

  9. Veselov, S.I., Gribanov, D.V., Zolotykh, N.Y., Chirkov, A.Y.: A polynomial algorithm for minimizing discrete convic functions in fixed dimension. Discret. Appl. Math. 283, 11–19 (2020). https://doi.org/10.1016/j.dam.2019.10.006

    Article  MathSciNet  Google Scholar 

  10. Barvinok, A.I.: A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. In: Proceedings of 1993 IEEE 34th annual foundations of computer science, 566–572 (1993). https://doi.org/10.1109/SFCS.1993.366830

  11. Dyer, M., Kannan, R.: On barvinok’s algorithm for counting lattice points in fixed dimension. Math. Oper. Res. 22(3), 545–549 (1997). https://doi.org/10.1287/moor.22.3.545

    Article  MathSciNet  Google Scholar 

  12. Barvinok, A., Pommersheim, J.: An algorithmic theory of lattice points in polyhedra New Perspect. Algebraic Combin. 38, 91–147 (1999)

    Google Scholar 

  13. Barvinok, A.: Integer points in polyhedra. European Mathematical Society, ETH-Zentrum, Zurich (2008)

    Book  Google Scholar 

  14. Barvinok, A., Woods, K.: Short rational generating functions for lattice point problems. J. Am. Math. Soc. 16(4), 957–979 (2003)

    Article  MathSciNet  Google Scholar 

  15. Beck, M., Robins, S.: Computing the continuous discretely. Springer, New York (2015)

    Book  Google Scholar 

  16. De Loera, J., Hemmecke, R., Köppe, M.: Algebraic and geometric ideas in the theory of discrete optimization. Society for Industrial and Applied Mathematics, Philadelphia (2013)

    Google Scholar 

  17. Lasserre, J.-B.: Linear and integer programming vs linear integration and counting: a duality viewpoint. Springer, New York (2009)

    Book  Google Scholar 

  18. Köppe, M., Verdoolaege, S. Computing parametric rational generating functions with a primal barvinok algorithm. The Electr. J. Combinat. (2008) https://doi.org/10.48550/arXiv.0705.3651

  19. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on voronoi cell computations. SIAM J. Comput. 42(3), 1364–1391 (2013)

    Article  MathSciNet  Google Scholar 

  20. Megiddo, N., Chandrasekaran, R.: On the \(\varepsilon \)-perturbation method for avoiding degeneracy. Oper. Res. Lett. 8(6), 305–308 (1989)

    Article  MathSciNet  Google Scholar 

  21. McMullen, P.: The maximum numbers of faces of a convex polytope. Mathematika 17(2), 179–184 (1970). https://doi.org/10.1112/S0025579300002850

    Article  MathSciNet  Google Scholar 

  22. Grünbaum, B.: Convex polytopes. Graduate texts in mathematics. Springer, New York (2011)

    Google Scholar 

  23. Schrijver, A.: Theory of linear and integer programming. Wiley, Chichester (1998)

    Google Scholar 

  24. Gribanov, V. D.: An FPTAS for the \(\Delta \)-modular multidimensional knapsack problem (2021). https://doi.org/10.1007/978-3-030-77876-7_6

  25. Gribanov, V. D., Malyshev, S. D.: A faster algorithm for counting the integer points number in \(\delta \)-modular polyhedra. Siberian electronic mathematical reports (2022). https://doi.org/10.33048/semi.2022.19.051

  26. Gribanov, V.D., Shumilov, A.I., Malyshev, S.D., Pardalos, M.P.: On \(\delta \)-modular integer linear problems in the canonical form and equivalent problems. J. Glob. Optim. (2022). https://doi.org/10.1007/s10898-022-01165-9

    Article  Google Scholar 

  27. Gribanov, D.V., Zolotykh, N.Y.: On lattice point counting in \(\delta \)-modular polyhedra. Optimiz. Lett. 16(7), 1991–2018 (2022). https://doi.org/10.1007/s11590-021-01744-x

    Article  MathSciNet  Google Scholar 

  28. Gribanov, D., Shumilov, I., Malyshev, D.: A faster algorithm for counting the integer points number in \(\Delta \)-modular polyhedra (corrected version) (2023)

  29. Lasserre, B., Jean Zeron, S.: Eduardo: solving the knapsack problem via z-transform. Operat. Res. Lett. 30(6), 394–400 (2002)

    Article  Google Scholar 

  30. Köppe, M.: A primal barvinok algorithm based on irrational decompositions. SIAM J. Discret. Math. 21(1), 220–236 (2007)

    Article  MathSciNet  Google Scholar 

  31. De Loera, J.A., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point counting in rational convex polytopes. J. Symb. Comput. 38(4), 1273–1302 (2004). https://doi.org/10.1016/j.jsc.2003.04.003

    Article  MathSciNet  Google Scholar 

  32. Kratsch, S.: On polynomial kernels for sparse integer linear programs. J. Comput. Syst. Sci. 82(5), 758–766 (2016)

    Article  MathSciNet  Google Scholar 

  33. Veselov, S.I., Chirkov, A.J.: Integer program with bimodular matrix. Discret. Optim. 6(2), 220–222 (2009). https://doi.org/10.1016/j.disopt.2008.12.002

    Article  MathSciNet  Google Scholar 

  34. Artmann, S., Weismantel, R., Zenklusen, R.: A strongly polynomial algorithm for bimodular integer linear programming. In: Proceedings of the 49th Annual ACM SIGACT symposium on theory of computing. STOC 2017, Association for Computing Machinery, New York, NY, USA, pp. 1206–1219 (2017). https://doi.org/10.1145/3055399.3055473

  35. Fiorini, S., Joret, G., Weltge, S., Yuditsky, Y.: Integer programs with bounded subdeterminants and two nonzeros per row. In: 2021 IEEE 62nd annual symposium on foundations of computer science (FOCS). IEEE, pp. 13–24 (2022)

  36. Alekseev, E.V., Zakharova, V.D.: Independent sets in the graphs with bounded minors of the extended incidence matrix. J. Appl. Ind. Math. 5(1), 14–18 (2011). https://doi.org/10.1134/S1990478911010029

    Article  MathSciNet  Google Scholar 

  37. Bock, A., Faenza, Y., Moldenhauer, C., Ruiz-Vargas, A.J.: Solving the stable set problem in terms of the odd cycle packing number. In: Raman, V., Suresh, S.P. (eds.) 34th International conference on foundation of software technology and theoretical computer science (FSTTCS 2014). Leibniz International Proceedings in Informatics (LIPIcs), vol. 29, pp. 187–198. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2014). https://doi.org/10.4230/LIPIcs.FSTTCS.2014.187

  38. Di Summa, M., Eisenbrand, F., Faenza, Y., Moldenhauer, C.: On largest volume simplices and sub-determinants, pp. 315–323. https://doi.org/10.1137/1.9781611973730.23

  39. Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966)

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Gribanov, D., Shumilov, I., Malyshev, D.: Structured \((\min ,+)\)-Convolution and its applications for the shortest vector, closest vector, and separable nonlinear Knapsack problems (2022)

  41. Polak, A., Rohwedder, L., Wegrzycki, K.: Knapsack and subset sum with small items. arXiv:2105.04035v1 [cs.DS] (2021)

  42. Cunningham, W.H., Geelen, J.: On integer programming and the branch-width of the constraint matrix. In: International conference on integer programming and combinatorial optimization, pp. 158–166 . Springer (2007)

  43. Fomin, F.V., Panolan, F., Ramanujan, M., Saurabh, S.: On the optimality of pseudo-polynomial algorithms for integer programming. Math. Programm. 198, 561–593 (2023)

    Article  MathSciNet  Google Scholar 

  44. Jansen, K., Rohwedder, L.: On integer programming and convolution. In: 10th Innovations in theoretical computer science conference (ITCS 2019) (2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik

  45. Lovász, L., Spencer, J., Vesztergombi, K.: Discrepancy of set-systems and matrices. Eur. J. Comb. 7(2), 151–160 (1986). https://doi.org/10.1016/S0195-6698(86)80041-5

    Article  MathSciNet  Google Scholar 

  46. Spencer, J.: Six standard deviations suffice. Trans. Am. Math. Soc. 289(2), 679–706 (1985). https://doi.org/10.1090/S0002-9947-1985-0784009-0

    Article  MathSciNet  Google Scholar 

  47. Beck, J., Fiala, T.: “Integer-making’’ theorems. Discret. Appl. Math. 3(1), 1–8 (1981)

    Article  MathSciNet  Google Scholar 

  48. Banaszczyk, W.: Balancing vectors and gaussian measures of n-dimensional convex bodies. Random Struct. Algorith. 12(4), 351–360 (1998)

    Article  MathSciNet  Google Scholar 

  49. Matoušek, J.: The determinant bound for discrepancy is almost tight. Proceed. Am. Math. Soci. 141(2), 451–460 (2013)

    Article  MathSciNet  Google Scholar 

  50. Jiang, H., Reis, V.: A tighter relation between hereditary discrepancy and determinant lower bound. In: Symposium on simplicity in algorithms (SOSA). SIAM, 308–313 (2022)

  51. Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for integer programming using the Steinitz lemma. ACM Trans. Algorith. 16(1), 1–4 (2019). https://doi.org/10.1145/3340322

    Article  MathSciNet  Google Scholar 

  52. Lee, J., Paat, J., Stallknecht, I., Xu, L.: Improving proximity bounds using sparsity. In: Baïou, M., Gendron, B., Günlük, O., Mahjoub, A.R. (eds.) Combinatorial optimization, pp. 115–127. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53262-8_10

    Chapter  Google Scholar 

  53. Lee, J., Paat, J., Stallknecht, I., Xu, L.: Polynomial upper bounds on the number of differing columns of an integer program. (2021) arXiv preprint arXiv:2105.08160v2 [math.OC]

  54. Averkov, G., Schymura, M.: On the maximal number of columns of \(\delta \)-modular matrix. In: International conference on integer programming and combinatorial optimization, pp. 29–42, Springer (2022)

  55. Koster, A.M., Zymolka, A.: Stable multi-sets. Math. Methods Oper. Res. 56(1), 45–65 (2002). https://doi.org/10.1007/s001860200199

    Article  MathSciNet  Google Scholar 

  56. Arie, K., Adrian, Z.: Polyhedral investigations on stable multi-sets. Technical Report 03–10, ZIB, Takustr. 7:14195 Berlin (2003)

  57. Koster, A.M., Zymolka, A.: On cycles and the stable multi-set polytope. Discret. Optim. 2(3), 241–255 (2005). https://doi.org/10.1016/j.disopt.2005.06.004

    Article  MathSciNet  Google Scholar 

  58. Fulkerson, D.R.: Blocking and anti-blocking pairs of polyhedra. Math. Program. 1(1), 168–194 (1971). https://doi.org/10.1007/BF01584085

    Article  MathSciNet  Google Scholar 

  59. Fulkerson, D.R.: Anti-blocking polyhedra. J. Comb. Theory, Series B 12(1), 50–71 (1972). https://doi.org/10.1016/0095-8956(72)90032-9

    Article  MathSciNet  Google Scholar 

  60. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer, Berlin & Heidelberg (2012)

    Google Scholar 

  61. Bredereck, R., Faliszewski, P., Niedermeier, R., Skowron, P., Talmon, N.: Elections with few candidates: Prices, weights, and covering problems. In: International conference on algorithmic decision theory, Springer, pp. 414–431 (2015). https://doi.org/10.1007/978-3-319-23114-3_25

  62. Bredereck, R., Faliszewski, P., Niedermeier, R., Skowron, P., Talmon, N.: Mixed integer programming with convex/concave constraints: fixed-parameter tractability and applications to multicovering and voting. Theoret. Comput. Sci. 814, 86–105 (2020). https://doi.org/10.1016/j.tcs.2020.01.017

    Article  MathSciNet  Google Scholar 

  63. Gorgi, A., El Ouali, M., Srivastav, A., Hachimi, M.: Approximation algorithm for the multicovering problem. J. Comb. Optim. 41(2), 433–450 (2021). https://doi.org/10.1007/s10878-020-00688-9

    Article  MathSciNet  Google Scholar 

  64. Hua, Q.-S., Wang, Y., Yu, D., Lau, F.C.: Dynamic programming based algorithms for set multicover and multiset multicover problems. Theoret. Comput. Sci. 411(26–28), 2467–2474 (2010). https://doi.org/10.1016/j.tcs.2010.02.016

    Article  MathSciNet  Google Scholar 

  65. Hua, Q.-S., Yu, D., Lau, F.C., Wang, Y.: Exact algorithms for set multicover and multiset multicover problems. In: International Symposium on Algorithms and Computation, Springer, pp. 34–44 (2009). https://doi.org/10.1007/978-3-642-10631-6_6

  66. Knop, D., Kouteckỳ, M., Mnich, M.: Combinatorial n-fold integer programming and applications. Math. Program. 184(1), 1–34 (2020). https://doi.org/10.1007/s10107-019-01402-2

    Article  MathSciNet  Google Scholar 

  67. Alon, N., Yuster, R.: On a hypergraph matching problem. Graphs Combinat. 21(4), 377–384 (2005)

    Article  MathSciNet  Google Scholar 

  68. Keevash, P., Mycroft, R.: A geometric theory for hypergraph matching. American Mathematical Society, Rhode Island (2014)

    Google Scholar 

  69. Gavenčiak, T., Kouteckỳ, M., Knop, D.: Integer programming in parameterized complexity: five miniatures. Discret. Optim. (2020). https://doi.org/10.1016/j.disopt.2020.100596

    Article  Google Scholar 

  70. Cohen, N., Nutov, Z.: Approximating minimum power edge-multi-covers. J. Comb. Optim. 30(3), 563–578 (2015)

    Article  MathSciNet  Google Scholar 

  71. Grossman, J.W., Kulkarni, D.M., Schochetman, I.E.: On the minors of an incidence matrix and its smith normal form. Linear Algebra Appl. 218, 213–224 (1995). https://doi.org/10.1016/0024-3795(93)00173-W

    Article  MathSciNet  Google Scholar 

  72. Storjohann, A.: Near optimal algorithms for computing Smith normal forms of integer matrices. In: Proceedings of the 1996 international symposium on symbolic and algebraic computation. ISSAC ’96, pp. 267–274. Association for Computing Machinery, New York, NY, USA (1996). https://doi.org/10.1145/236869.237084

  73. Zhendong, W.: Computing the Smith forms of integer matrices and solving related problems. University of Delaware, Newark, DE (2005)

    Google Scholar 

  74. Lawrence, J.: Rational-function-valued valuations on polyhedra. Discrete and computational geometry (New Brunswick, NJ, 1989/1990) Vol. 6, pp. 199–208 (1991)

  75. Pukhlikov, A.V., Khovanskii, A.G.: The riemann-roch theorem for integrals and sums of quasipolynomials on virtual polytopes (russian). Algebra i Analiz 4(4), 188–216 (1992)

    Google Scholar 

  76. Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete Comput. Geometry 8(3), 295–313 (1992). https://doi.org/10.1007/BF02293050

    Article  MathSciNet  Google Scholar 

  77. Brion, M.: Points entiers dans les polyèdres convexes. Annales scientifiques de l’École Normale Supérieure 4e s’erie 21(4), 653–663 (1988). https://doi.org/10.24033/asens.1572

    Article  Google Scholar 

  78. Cook, W., Gerards, A.M.H., Schrijver, A., Tardos, E.: Sensitivity theorems in integer linear programming. Math. Program. 34(3), 251–261 (1986). https://doi.org/10.1007/BF01582230

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Section 2 was prepared within the framework of the Basic Research Program at the National Research University Higher School of Economics (HSE). Sections 2.2 and 3 were prepared under financial support of Russian Science Foundation Grant No. 21-11-00194. Additionally, the authors would thank the anonymous reviewers who offered important comments that significantly improved our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Gribanov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Theorem 10

Proof

Fix a parameter r and let \({{\,\mathrm{\mathcal {I}}\,}}= \{-r, \dots , r\}\). For \(a \in {{\,\mathrm{\mathcal {A}}\,}}\), denote \({{\,\mathrm{\mathcal {H}}\,}}_a = \{x \in {{\,\mathrm{\mathcal {I}}\,}}^n :a^\top x = 0\}\), and let

$$\begin{aligned} {{\,\mathrm{\mathcal {N}}\,}}= {{\,\mathrm{\mathcal {I}}\,}}^n \setminus \bigcup \limits _{a \in {{\,\mathrm{\mathcal {A}}\,}}} {{\,\mathrm{\mathcal {H}}\,}}_a. \end{aligned}$$

Consider a polynomial \(f :{{\,\mathrm{\mathbb {R}}\,}}^n \rightarrow {{\,\mathrm{\mathbb {R}}\,}}\) given by the formula

$$\begin{aligned} f(x) = \prod \limits _{a \in {{\,\mathrm{\mathcal {A}}\,}}} a^\top x. \end{aligned}$$

Clearly, f is a homogeneous polynomial with \(\deg (f) = |{{{\,\mathrm{\mathcal {A}}\,}}}| = m\). Let \({{\,\mathrm{\mathcal {R}}\,}}= \{ x \in {{\,\mathrm{\mathcal {I}}\,}}^{n} :f(x) = 0\}\) be the roots of f inside \({{\,\mathrm{\mathcal {I}}\,}}^{n}\). Note that \({{\,\mathrm{\mathcal {R}}\,}}= \bigcup _{a \in {{\,\mathrm{\mathcal {A}}\,}}} {{\,\mathrm{\mathcal {H}}\,}}_a\) and \({{\,\mathrm{\mathcal {N}}\,}}= {{\,\mathrm{\mathcal {I}}\,}}^n \setminus {{\,\mathrm{\mathcal {R}}\,}}\). Due to the known Schwartz–Zippel lemma, \(|{{{\,\mathrm{\mathcal {R}}\,}}}| \le \deg (f) \cdot |{{{\,\mathrm{\mathcal {I}}\,}}}|^{n-1} = m \cdot (2r+1)^{n-1}\). Therefore, \(|{{{\,\mathrm{\mathcal {N}}\,}}}| \ge (2 r + 1)^n - m \cdot (2 r + 1)^{n-1} = (2 r + 1)^{n-1} \cdot (2 r + 1 - m)\), and consequently

$$\begin{aligned} \frac{|{{{\,\mathrm{\mathcal {N}}\,}}}|}{|{{{\,\mathrm{\mathcal {I}}\,}}^n}|} \ge \frac{2r +1 - m}{ 2 r + 1} = 1 - \frac{m}{2 r + 1}. \end{aligned}$$

Assign \(r:= m\). After that, the previous inequality becomes \(\frac{|{{{\,\mathrm{\mathcal {N}}\,}}}|}{|{{{\,\mathrm{\mathcal {I}}\,}}^n}|} > 1/2\). Now, to find a vector z that can satisfy the claims

  1. 1.

    \(a^\top z \not = 0\), for any \(a \in {{\,\mathrm{\mathcal {A}}\,}}\);

  2. 2.

    \(\Vert z\Vert _{\infty } \le m\);

we uniformly sample points z inside \({{\,\mathrm{\mathcal {I}}\,}}^n\). With a probability at least 1/2 it will satisfy the first claim. The second claim is satisfied automatically. Therefore, the expected number of sampling iterations is O(1). The arithmetic complexity of a single iteration is clearly bounded by \(O(n \cdot m)\), which completes the proof. \(\square \)

Appendix B: Proof of the Lemma 2

1.1 A recurrent formula for the generating function of a group polyhedron

Let \({{\,\mathrm{\mathcal {G}}\,}}\) be an arbitrary finite Abelian group and \(g_1,\dots ,g_n \in {{\,\mathrm{\mathcal {G}}\,}}\). Let additionally \(r_i = |{\langle g_i \rangle }|\) be the order of \(g_i\), for \(i \in \{1, \dots , n\}\), and \(r_{\max } = \max _{i} \{r_i\}\). For \(g' \in {{\,\mathrm{\mathcal {G}}\,}}\) and \(k \in \{1, \dots , n\}\), let \({{\,\mathrm{\mathcal {M}}\,}}(k,g')\) be the solutions set of the following system:

$$\begin{aligned} {\left\{ \begin{array}{ll} \sum \limits _{i = 1}^k x_i g_i = g'\\ x \in {{\,\mathrm{\mathbb {Z}}\,}}_{\ge 0}^k. \end{array}\right. } \end{aligned}$$
(B1)

Consider the formal power series \( {{\,\mathrm{\mathfrak {f}}\,}}_k(g';{{\,\mathrm{\textbf{x}}\,}}) = \sum \limits _{z \in {{\,\mathrm{\mathcal {M}}\,}}(k,g') \cap {{\,\mathrm{\mathbb {Z}}\,}}^k} {{\,\mathrm{\textbf{x}}\,}}^z. \) For \(k = 1\), we clearly have

$$\begin{aligned} {{\,\mathrm{\mathfrak {f}}\,}}_1(g';{{\,\mathrm{\textbf{x}}\,}}) = \frac{x_1^s}{1 - x_1^{r_1}},\quad \text {where } s = \min \{x_1 \in {{\,\mathrm{\mathbb {Z}}\,}}_{\ge 0} :x_1 g_1 = g'\}. \end{aligned}$$
(B2)

If such s does not exist, we put \({{\,\mathrm{\mathfrak {f}}\,}}_1(g';{{\,\mathrm{\textbf{x}}\,}}):= 0\). Clearly, the series \({{\,\mathrm{\mathfrak {f}}\,}}_1(g';{{\,\mathrm{\textbf{x}}\,}})\) absolutely converges to the corresponding right-hand side function for any \(x_1 \in {{\,\mathrm{\mathbb {C}}\,}}\) with \(|{x_1^{r_1}}| < 1\). For any value of \(x_k \in {{\,\mathrm{\mathbb {Z}}\,}}_{\ge 0}\), the system (B1) can be rewritten as

$$\begin{aligned} {\left\{ \begin{array}{ll} \sum \limits _{i = 1}^{k-1} x_i g_i = g' - x_k g_k\\ x \in {{\,\mathrm{\mathbb {Z}}\,}}_{\ge 0}^{k-1}. \end{array}\right. } \end{aligned}$$

Hence, for \(k \ge 1\), we have

$$\begin{aligned} {{\,\mathrm{\mathfrak {f}}\,}}_k(g';{{\,\mathrm{\textbf{x}}\,}})= & {} \frac{ {{\,\mathrm{\mathfrak {f}}\,}}_{k-1}(g';{{\,\mathrm{\textbf{x}}\,}}) + x_{k} \cdot {{\,\mathrm{\mathfrak {f}}\,}}_{k-1}(g' - g_k;{{\,\mathrm{\textbf{x}}\,}}) + \dots + x_{k}^{r_k - 1} \cdot {{\,\mathrm{\mathfrak {f}}\,}}_{k-1}(g' - g_k \cdot (r_k - 1);{{\,\mathrm{\textbf{x}}\,}})}{1 - x_k^{r_k}} \nonumber \\= & {} \frac{1}{1 - x_{k}^{r_k}} \cdot \sum _{i = 0}^{r_k - 1} x_k^i \cdot {{\,\mathrm{\mathfrak {f}}\,}}_{k-1}(g' - i \cdot g_k;{{\,\mathrm{\textbf{x}}\,}}). \end{aligned}$$
(B3)
$$\begin{aligned} \text {Consequently,} \quad {{\,\mathrm{\mathfrak {f}}\,}}_k(g';{{\,\mathrm{\textbf{x}}\,}}) = \frac{\sum \nolimits _{i_1 = 0}^{r_1-1}\dots \sum \nolimits _{i_k = 0}^{r_k-1} \epsilon _{i_1,\dots ,i_k} x_1^{i_1} \dots x_k^{i_k}}{(1 - x_1^{r_1})(1 - x_2^{r_2})\dots (1 - x_k^{r_k})}, \end{aligned}$$
(B4)

where the numerator is a polynomial with coefficients \(\epsilon _{i_1,\dots ,i_k} \in \{0,1\}\) and degree at most \((r_1 - 1) \dots (r_k - 1)\). Since a sum of absolutely convergent series is absolutely convergent, it follows from the induction principle that the series \({{\,\mathrm{\mathfrak {f}}\,}}_k(g';{{\,\mathrm{\textbf{x}}\,}})\) absolutely converges to the right-hand side of the formula (B4) when \(|{x_i^{r_i}}| < 1\) for each \(i \in \{1, \dots , k\}\).

1.2 The group \({{\,\mathrm{\mathcal {G}}\,}}\), induced by the SNF, of A

Recall that \(A \in {{\,\mathrm{\mathbb {Z}}\,}}^{n \times n}\), \(0 < \Delta = |{\det (A)}|\), and \(h_1, \dots , h_n\) are the columns of \(A^*:= \Delta \cdot A^{-1}\). The vector \(c \in {{\,\mathrm{\mathbb {Z}}\,}}^n\) is chosen, such that \(\langle c, h_i \rangle > 0\), for each \(i \in \{1, \dots , n\}\), and \(\psi = \max _i |{ \langle c, h_i \rangle }|\). Additionally, let \(S = P A Q\) be the SNF of A, where \(P,Q \in {{\,\mathrm{\mathbb {Z}}\,}}^{n \times n}\) are unimodular, and \(\sigma = S_{n n}\).

Let us consider the sets \({{\,\mathrm{\mathcal {M}}\,}}(k,g')\), induced by the group system (B1) with \({{\,\mathrm{\mathcal {G}}\,}}= {{\,\mathrm{\mathbb {Z}}\,}}^{n}/S{{\,\mathrm{\mathbb {Z}}\,}}^n\) and \(g_i = P_{* i} \bmod S{{\,\mathrm{\mathbb {Z}}\,}}^n\). Note that \(r_i \le \sigma \), for each \(i \in \{1, \dots , n\}\). Additionally, let us consider a new formal series, defined by

$$\begin{aligned} {\hat{{{\,\mathrm{\mathfrak {f}}\,}}}}_k(g';{{\,\mathrm{\textbf{x}}\,}}) = \sum \limits _{z \in {{\,\mathrm{\mathcal {M}}\,}}(k,g') \cap {{\,\mathrm{\mathbb {Z}}\,}}^k} {{\,\mathrm{\textbf{x}}\,}}^{-\sum \limits _{i=1}^k h_i z_i}, \end{aligned}$$

which can be derived from the series \({{\,\mathrm{\mathfrak {f}}\,}}_k(g';{{\,\mathrm{\textbf{x}}\,}})\) by the monomial substitution \(x_i \rightarrow {{\,\mathrm{\textbf{x}}\,}}^{-h_i}\). For \({\hat{{{\,\mathrm{\mathfrak {f}}\,}}}}_k(g';{{\,\mathrm{\textbf{x}}\,}})\), the formulae (B2), (B3) and (B4) become:

$$\begin{aligned}{} & {} {\hat{{{\,\mathrm{\mathfrak {f}}\,}}}}_1(g'; {{\,\mathrm{\textbf{x}}\,}}) = \frac{{{\,\mathrm{\textbf{x}}\,}}^{- s h_1}}{1 - {{\,\mathrm{\textbf{x}}\,}}^{-r_1 h_1}},\quad \text {where } s = \min \{y_1 \in {{\,\mathrm{\mathbb {Z}}\,}}_{\ge 0} :y_1 g_1 = g' \},\end{aligned}$$
(B5)
$$\begin{aligned}{} & {} {\hat{{{\,\mathrm{\mathfrak {f}}\,}}}}_k(g';{{\,\mathrm{\textbf{x}}\,}}) = \frac{1}{1 - {{\,\mathrm{\textbf{x}}\,}}^{-r_k h_k}} \cdot \sum \limits \limits _{i = 0}^{r_k-1} {{\,\mathrm{\textbf{x}}\,}}^{- i h_k} \cdot \hat{{\,\mathrm{\mathfrak {f}}\,}}_{k-1}(g' - i \cdot g_k; {{\,\mathrm{\textbf{x}}\,}}) \text { and} \end{aligned}$$
(B6)
$$\begin{aligned}{} & {} {\hat{{{\,\mathrm{\mathfrak {f}}\,}}}}_k(g';{{\,\mathrm{\textbf{x}}\,}}) = \frac{\sum \nolimits _{i_1 = 0}^{r_1-1}\dots \sum \nolimits _{i_k = 0}^{r_k-1} \epsilon _{i_1,\dots ,i_k} {{\,\mathrm{\textbf{x}}\,}}^{-(i_1 h_1 + \dots + i_k h_k)}}{(1 - {{\,\mathrm{\textbf{x}}\,}}^{-r_1 h_1})(1 - {{\,\mathrm{\textbf{x}}\,}}^{-r_2 h_2}) \dots (1 - {{\,\mathrm{\textbf{x}}\,}}^{-r_k h_k})}. \end{aligned}$$
(B7)

Clearly, here the absolute convergence takes place for the values of \({{\,\mathrm{\textbf{x}}\,}}\) with \(|{{{\,\mathrm{\textbf{x}}\,}}^{- r_i h_i}}| < 1\), for each \(i \in \{1, \dots , k\}\). Let us consider now the formal series

$$\begin{aligned} {{\,\mathrm{\mathfrak {g}}\,}}_k(g'; \tau ) = \sum \limits _{y \in {{\,\mathrm{\mathcal {M}}\,}}_k(g')} e^{- \tau \cdot \langle c, \sum _{i=1}^k h_i y_i \rangle }, \end{aligned}$$

which can be derived from \({\hat{{{\,\mathrm{\mathfrak {f}}\,}}}}_k(g';{{\,\mathrm{\textbf{x}}\,}})\) by the substitution \(x_i \rightarrow e^{\tau \cdot c_i}\). For \({{\,\mathrm{\mathfrak {g}}\,}}_k(g'; \tau )\), the formulae (B5), (B6), and (B7) become:

$$\begin{aligned}{} & {} {{\,\mathrm{\mathfrak {g}}\,}}_1(g'; \tau ) = \frac{e^{- \langle c, s h_1 \rangle \cdot \tau }}{1 - e^{- \langle c, r_1 h_1 \rangle \cdot \tau }}, \end{aligned}$$
(B8)
$$\begin{aligned}{} & {} {{\,\mathrm{\mathfrak {g}}\,}}_k(g';\tau ) = \frac{1}{1 - e^{-\langle c, r_k h_k \rangle \cdot \tau }} \cdot \sum \limits _{i = 0}^{r_k-1} e^{- \langle c, i h_k \rangle \cdot \tau } \cdot {{\,\mathrm{\mathfrak {g}}\,}}_{k-1}(g' - i \cdot g_k; \tau ), \end{aligned}$$
(B9)
$$\begin{aligned}{} & {} {{\,\mathrm{\mathfrak {g}}\,}}_k(g';\tau ) = \frac{\sum \nolimits _{i_1 = 0}^{r_1-1}\dots \sum \nolimits _{i_k = 0}^{r_k-1} \epsilon _{i_1,\dots ,i_k} e^{-\langle c, i_1 h_1 + \dots + i_k h_k \rangle \cdot \tau } }{\bigl (1 - e^{-\langle c, r_1 h_1 \rangle \cdot \tau }\bigr )\bigl (1 - e^{-\langle c, r_2 h_2 \rangle \cdot \tau }\bigr ) \dots \bigl (1 - e^{- \langle c, r_k h_k \rangle \cdot \tau }\bigr )}. \end{aligned}$$
(B10)

Since the series \({\hat{{{\,\mathrm{\mathfrak {f}}\,}}}}_k(g';{{\,\mathrm{\textbf{x}}\,}})\) absolutely converges, when \(|{{{\,\mathrm{\textbf{x}}\,}}^{- r_i h_i}}| < 1\), for each \(i \in \{1, \dots , k\}\), the new one converges, for any \(\tau > 0\). Since \(\langle c,h_i \rangle \in {{\,\mathrm{\mathbb {Z}}\,}}_{\not =0}\), for each i, the number of terms \(e^{-\langle c, \cdot \rangle \cdot \tau }\) is bounded by \(2 \cdot k \cdot \sigma \cdot \psi + 1\). So, after combining similar terms, the numerator’s length becomes \(O(k \cdot \sigma \cdot \psi )\). In other words, there exist coefficients \(\epsilon _i \in {{\,\mathrm{\mathbb {Z}}\,}}_{\ge 0}\), such that

$$\begin{aligned} {{\,\mathrm{\mathfrak {g}}\,}}_k(g';\tau ) = \frac{\sum \nolimits _{i = - k \cdot \sigma \cdot \psi }^{k \cdot \sigma \cdot \psi } \epsilon _i \cdot e^{- i \cdot \tau }}{\bigl (1 - e^{-\langle c, r_1 \cdot h_1 \rangle \tau }\bigr )\bigl (1 - e^{-\langle c, r_2 h_2 \rangle \cdot \tau }\bigr ) \dots \bigl (1 - e^{- \langle c, r_k h_k \rangle \cdot \tau }\bigr )}. \end{aligned}$$
(B11)

The formulae (B8), (B9), and (B11) coincide with the desired formulae (17), (18), and (19). So, the proof of Lemma 2 is finished.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gribanov, D., Shumilov, I., Malyshev, D. et al. Faster algorithms for sparse ILP and hypergraph multi-packing/multi-cover problems. J Glob Optim (2024). https://doi.org/10.1007/s10898-024-01379-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10898-024-01379-z

Keywords

Navigation