Skip to main content
Log in

Fractional 0–1 programming and submodularity

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this note we study multiple-ratio fractional 0–1 programs, a broad class of \(\mathcal {NP}\)-hard combinatorial optimization problems. In particular, under some relatively mild assumptions we provide a complete characterization of the conditions, which ensure that a single-ratio function is submodular. Then we illustrate our theoretical results with the assortment optimization and facility location problems, and discuss practical situations that guarantee submodularity in the considered application settings. In such cases, near-optimal solutions for multiple-ratio fractional 0–1 programs can be found via simple greedy algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Ahmed, S., Atamtürk, A.: Maximizing a class of submodular utility functions. Math. Program. 128(1–2), 149–169 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alfandari, L., Hassanzadeh, A., Ljubić, I.: An exact method for assortment optimization under the nested logit model. Eur. J. Oper. Res. 291(3), 830–845 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amiri, A., Rolland, E., Barkhi, R.: Bandwidth packing with queuing delay costs: Bounding and heuristic solution procedures. Eur. J. Oper. Res. 112(3), 635–645 (1999)

    Article  MATH  Google Scholar 

  4. Arora, S., Puri, M., Swarup, K.: The set covering problem with linear fractional functional. Indian J. Pure Appl. Math. 8(5), 578–588 (1977)

    MathSciNet  MATH  Google Scholar 

  5. Atamtürk, A., Berenguer, G., Shen, Z.-J.: A conic integer programming approach to stochastic joint location-inventory problems. Oper. Res. 60(2), 366–381 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Atamtürk, A., Gómez, A.: Maximizing a class of utility functions over the vertices of a polytope. Oper. Res. 65(2), 433–445 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Atamtürk, A., Gómez, A.: Submodularity in conic quadratic mixed 0–1 optimization. Oper. Res. 68(2), 609–630 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Atamtürk, A., Narayanan, V.: Polymatroids and mean-risk minimization in discrete optimization. Oper. Res. Lett. 36(5), 618–622 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Atamtürk, A., Narayanan, V.: Submodular function minimization and polarity. Math. Program. 1–11 (2021)

  10. Barros, A.I.: Discrete and Fractional Programming Techniques for Location Models, vol. 3. Springer Science & Business Media (2013)

  11. Benati, S.: Submodularity in competitive location problems. Ricerca Oper. (1996)

  12. Benati, S., Hansen, P.: The maximum capture problem with random utilities: problem formulation and algorithms. Eur. J. Oper. Res. 143(3), 518–530 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Berbeglia, G., Joret, G.: Assortment optimisation under a general discrete choice model: a tight analysis of revenue-ordered assortments. In: Proceedings of the 2017 ACM Conference on Economics and Computation, EC ’17, pp. 345–346. New York, NY, USA. ACM (2017)

  14. Bertsimas, D., Korolko, N., Weinstein, A.M.: Identifying exceptional responders in randomized trials: an optimization approach. INFORMS J. Optim. 1(3), 187–199 (2019)

    Article  MathSciNet  Google Scholar 

  15. Bonnet, C., Simioni, M.: Assessing consumer response to protected designation of origin labelling: a mixed multinomial logit approach. Eur. Rev. Agric. Econ. 28(4), 433–449 (2001)

    Article  Google Scholar 

  16. Borrero, J.S., Gillen, C., Prokopyev, O.A.: A simple technique to improve linearized reformulations of fractional (hyperbolic) 0–1 programming problems. Oper. Res. Lett. 44(4), 479–486 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Borrero, J.S., Gillen, C., Prokopyev, O.A.: Fractional 0–1 programming: applications and algorithms. J. Global Optim. 69(1), 255–282 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chandrasekaran, R.: Minimal ratio spanning trees. Networks 7(4), 335–342 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dam, T.T., Ta, T.A., Mai, T.: Submodularity and local search approaches for maximum capture problems under generalized extreme value models. Eur. J. Oper. Res. (2021)

  21. Désir, A., Goyal, V., Segev, D., Ye, C.: Capacity constrained assortment optimization under the Markov chain based choice model. Working paper, Columbia University, New York, NY (2015). http://dx.doi.org/10.2139/ssrn.2626484

  22. Désir, A., Goyal, V., Zhang, J.: Near-optimal algorithms for capacity constrained assortment optimization. Working paper, Columbia University, NY (2014). http://dx.doi.org/10.2139/ssrn.2543309

  23. Du, D., Lu, R., Xu, D.: A primal-dual approximation algorithm for the facility location problem with submodular penalties. Algorithmica 63(1–2), 191–200 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Elhedhli, S.: Exact solution of a class of nonlinear knapsack problems. Oper. Res. Lett. 33(6), 615–624 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Feldman, J., Topaloglu, H.: Bounding optimal expected revenues for assortment optimization under mixtures of multinomial logits. Prod. Oper. Manag. 24(10), 1598–1620 (2015)

    Article  Google Scholar 

  26. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for maximizing submodular set functions–II. In: Balinski, M.L., Hoffman, A.J. (eds.) Polyhedral Combinatorics, pp. 73–87. Springer, Berlin (1978)

    Chapter  Google Scholar 

  27. Goldstein, M.: Meet the most crowded airlines: Load factor hits all-time high (2018). https://www.forbes.com/sites/michaelgoldstein/2018/07/09/meet-the-most-crowded-airlines-load-factor-hits-all-time-high/#90f0b4354fbd. Accessed 12 April 2019 (Forbes)

  28. Granot, D., Granot, F.: On solving fractional (0, 1) programs by implicit enumeration. INFOR Inform. Syst. Oper. Res. 14(3), 241–249 (1976)

  29. Hansen, P., De Aragão, M.V.P., Ribeiro, C.C.: Boolean query optimization and the 0–1 hyperbolic sum problem. Ann. Math. Artif. Intell. 1(1–4), 97–109 (1990)

    Article  MATH  Google Scholar 

  30. Hansen, P., De Aragão, M.V.P., Ribeiro, C.C.: Hyperbolic 0–1 programming and query optimization in information retrieval. Math. Program. 52(1–3), 255–263 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hoisington, A.: Hotel Management (2018). https://www.hotelmanagement.net/own/occupancy-hits-30-year-high-u-s. Accessed 12 April 2019

  32. Iwano, K., Misono, S., Tezuka, S., Fujishige, S.: A new scaling algorithm for the maximum mean cut problem. Algorithmica 11(3), 243–255 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kulik, A., Shachnai, H., Tamir, T.: Maximizing submodular set functions subject to multiple linear constraints. In: Mathieu, C. (ed.), Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 545–554. Society for Industrial and Applied Mathematics (2009)

  34. Kunnumkal, S.: On upper bounds for assortment optimization under the mixture of multinomial logit models. Oper. Res. Lett. 43(2), 189–194 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kunnumkal, S., Martínez-de Albéniz, V.: Tractable approximations for assortment planning with product costs. Oper. Res. 67(2), 436–452 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Li, Y., Du, D., Xiu, N., Xu, D.: Improved approximation algorithms for the facility location problems with linear/submodular penalties. Algorithmica 73(2), 460–482 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lin, Y.H., Tian, Q.: Exact approaches for competitive facility location with discrete attractiveness. Optim. Lett. 15, 377–389 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ljubić, I., Moreno, E.: Outer approximation and submodular cuts for maximum capture facility location problems with random utilities. Eur. J. Oper. Res. 266(1), 46–56 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lovász, L. (1983). Submodular functions and convexity. In Mathematical programming the state of the art, pages 235–257. Springer

  40. McFadden, D., Train, K.: Mixed MNL models for discrete response. J. Appl. Economet. 15(5), 447–470 (2000)

    Article  Google Scholar 

  41. Megiddo, N., et al.: Combinatorial optimization with rational objective functions. Math. Oper. Res. 4(4), 414–424 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mehmanchi, E., Gómez, A., Prokopyev, O.A.: Fractional 0–1 programs: links between mixed-integer linear and conic quadratic formulations. J. Global Optim. 75(2), 273–339 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Méndez-Díaz, I., Miranda-Bront, J.J., Vulcano, G., Zabala, P.: A branch-and-cut algorithm for the latent-class logit assortment problem. Discret. Appl. Math. 164, 246–263 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mittal, S., Schulz, A.S.: A general framework for designing approximation schemes for combinatorial optimization problems with many objectives combined into one. Oper. Res. 61(2), 386–397 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Moorthy, K.S., Png, I.P.: Market segmentation, cannibalization, and the timing of product introductions. Manage. Sci. 38(3), 345–359 (1992)

    Article  MATH  Google Scholar 

  46. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Math. Program. 14(1), 265–294 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ortiz-Astorquiza, C., Contreras, I., Laporte, G.: Formulations and approximation algorithms for multilevel uncapacitated facility location. INFORMS J. Comput. 29(4), 767–779 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Prokopyev, O.A., Huang, H.-X., Pardalos, P.M.: On complexity of unconstrained hyperbolic 0–1 programming problems. Oper. Res. Lett. 33(3), 312–318 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Prokopyev, O.A., Meneses, C., Oliveira, C.A., Pardalos, P.M.: On multiple-ratio hyperbolic 0–1 programming problems. Pacific J. Optim. 1(2), 327–345 (2005)

    MathSciNet  MATH  Google Scholar 

  50. Radzik, T.: Fractional combinatorial optimization. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 429–478. Springer-Verlag, New York (1998)

    Chapter  MATH  Google Scholar 

  51. Rusmevichientong, P., Shen, Z.-J.M., Shmoys, D.B.: A PTAS for capacitated sum-of-ratios optimization. Oper. Res. Lett. 37(4), 230–238 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Rusmevichientong, P., Shen, Z.-J.M., Shmoys, D.B.: Dynamic assortment optimization with a multinomial logit choice model and capacity constraint. Oper. Res. 58(6), 1666–1680 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Rusmevichientong, P., Shmoys, D., Tong, C., Topaloglu, H.: Assortment optimization under the multinomial logit model with random choice parameters. Prod. Oper. Manag. 23(11), 2023–2039 (2014)

    Article  Google Scholar 

  54. Sethuraman, S., Butenko, S.: The maximum ratio clique problem. CMS 12(1), 197–218 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  56. Talluri, K., van Ryzin, G.: Revenue management under a general discrete choice model of consumer behavior. Manage. Sci. 50(1), 15–33 (2004)

    Article  MATH  Google Scholar 

  57. Talluri, K.T., van Ryzin, G.J.: The Theory and Practice of Revenue Management, vol. 68. Springer Science & Business Media (2006)

  58. Tawarmalani, M., Ahmed, S., Sahinidis, N.V.: Global optimization of 0–1 hyperbolic programs. J. Global Optim. 24(4), 385–416 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  59. Ursulenko, O., Butenko, S., Prokopyev, O.A.: A global optimization algorithm for solving the minimum multiple ratio spanning tree problem. J. Global Optim. 56(3), 1029–1043 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This note is based upon work supported by the National Science Foundation under Grant No. 1818700. The authors would like to thank the Associate Editor and two anonymous referees for their constructive and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg A. Prokopyev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Gómez, A. & Prokopyev, O.A. Fractional 0–1 programming and submodularity. J Glob Optim 84, 77–93 (2022). https://doi.org/10.1007/s10898-022-01131-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-022-01131-5

Keywords

Navigation