Skip to main content
Log in

Dynamic multicriteria games with asymmetric players

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper a new approach to construct cooperative behavior in dynamic multicriteria games with asymmetric players is presented. To obtain noncooperative and cooperative equilibria the ideas of multi-objective optimization and game theory are combined. To construct a multicriteria Nash equilibrium the bargaining solution is adopted. To design a multicriteria cooperative equilibrium a compromise scheme that guarantees the fulfillment of rationality conditions is applied. The concept of dynamic stability is adopted for dynamic multicriteria games, and the time-consistent payoff distribution procedure is presented. A dynamic bi-criteria bioresource management problem with different discount factors is considered. The strategies and payoffs of players are obtained under cooperative and noncooperative behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adeyeye, A.D., Oyawale, A.F.: Multi-objective methods for welding flux performance optimization. RMZ-Mater. Geoenviron. 57(2), 251–270 (2010)

    Google Scholar 

  2. Abou El MajdB., B., Desideri, J.A., Duvigneau, R.: Shape design in aerodynamics: parameterization and sensitivity. Eur. J. Comput. Mech. 17(1–2), 149–168 (2008)

    MATH  Google Scholar 

  3. Basar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory. Academic, Bodmin (1995)

    MATH  Google Scholar 

  4. Breton, M., Keoula, M.Y.: A great fish war model with asymmetric players. Ecol. Econ. 97, 209–223 (2014)

    Article  Google Scholar 

  5. Brown M., An B., Kiekintveld C., Ordonez F., Tambe M.: Multi-objective optimization for security games. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, Valencia (2012)

  6. Cheng R.Y.: Evolutionary game theoretic multi-objective optimization algorithms and their applications. Graduate Doctoral Dissertations (2017)

  7. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.A.: Evolutionary Algorithms for Solving Multi-objective Problems, second edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  8. Cohon, J.L.: Multi-objective Programming and Planning. Academic Press, New York (1983)

    Google Scholar 

  9. Das, I., Dennis, J.E.: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multi-criteria optimization problems. Struct. Optim. 14, 63–69 (1997)

    Article  Google Scholar 

  10. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Hoboken (2001)

    MATH  Google Scholar 

  11. Deh, K., Sundar, J., Roa, N., Chaudhuri, S.: Reference point based multi-objective optimization using evolutionary algorithms. Int. J. Comput. Intell. Res. 2(3), 273–286 (2006)

    MathSciNet  Google Scholar 

  12. Dhingra, A.K., Rao, S.S.: A cooperative fuzzy game theoretic approach to multiple objective design optimization. Eur. J. Oper. Res. 83, 547–567 (1995)

    Article  MATH  Google Scholar 

  13. Dlugosz, A., Jarosz, P., Schlieter, T.: Optimal design of electrothermal microactuators for many criteria by means of an immune game theory multiobjective algorithm. Appl. Sci. 9, 4654 (2019)

    Article  Google Scholar 

  14. Fonseca C.M., Fleming P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: ICGA, Morgan Kaufmann, pp. 416–423 (1993)

  15. Gaudrie, D., Le Riche, R., Picheny, V., Enaux, B., Herbert, V.: Targeting solutions in Bayesian multi-objective optimization: sequential and batch versions. Ann. Math. Artif. Intell. 88, 187–212 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ghose, D.: A necessary and sufficient condition for Pareto-optimal security strategies in multicriteria matrix games. J. Optim. Theory Appl. 68, 463–481 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghose, D., Prasad, U.R.: Solution concepts in two-person multicriteria games. J. Optim. Theory Appl. 63, 167–189 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Haimes, Y.Y., Lasdon, S., Wismer, D.A.: On a bicriteria formulation of the problem of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. 1(3), 296–297 (1971)

    MATH  Google Scholar 

  19. Haurie, A.: A note on nonzero-sum differential games with bargaining solution. J. Optim. Theory Appl. 18, 31–39 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ignizio, J.P.: Goal Programming and Extensions. Heath, Boston (1976)

    Google Scholar 

  21. Isermann, H., Steuer, R.E.: Computational experience concerning payoff tables and minimum criterion values over the efficient set. Eur. J. Oper. Res. 33(1), 91–97 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kalai, E.: Proportional solutions to bargaining situations: intertemporal utility comparisons. Econometrica 45(7), 1623–1630 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kalai, E., Smorodinsky, M.: Other solutions to Nash’s bargaining problem. Econometrica 43(3), 513–518 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kuhn, H.W., Tucker, A.W.: Nonlinear Programming, Proceedings of 2nd Berkeley Symposium, pp. 481–492. University of California Press, Berkeley (1951)

    Google Scholar 

  25. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

    Article  Google Scholar 

  26. Konak, A., Coit, D., Smith, A.: Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006)

    Article  Google Scholar 

  27. Lee, D., Gonzales, L.F., Periaux, J., Srinivas, K., Onate, E.: Hybrid-game strategies for multi-objective design optimization in engineering. Comput. Fluids 47, 189–204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mazalov, V.V., Rettieva, A.N.: Fish wars and cooperation maintenance. Ecol. Model. 221, 1545–1553 (2010)

    Article  Google Scholar 

  29. Nash, J.: The bargaining problem. Econometrica 18(2), 155–162 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ohazulike A.E., Bliemer M.C.J., Still G., Berkum E.C.V.: Multi-objective road pricing: a game theoretic and multi-stakeholder approach, In: 91st Annual Meeting of the Transportation Research Board (TRB) Conference, 12-0719, Washington D.C. (2012)

  31. Periaux, J., Chen, H.Q., Mantel, B., Sefrioui, M., Sui, H.T.: Combining game theory and genetic algorithms with application to DDM-nozzle optimization problems. Finite Elem. Anal. Design 37, 417–429 (2001)

    Article  MATH  Google Scholar 

  32. Petrosjan, L.A.: Stable solutions of differential games with many participants. Vestnik Leningrad Univ. 19, 46–52 (1977)

    MATH  Google Scholar 

  33. Petrosjan, L.A., Danilov, N.N.: Stable solutions of nonantagonostic differential games with transferable utilities. Vestnik Leningrad Univ. 1, 52–59 (1979)

    Google Scholar 

  34. Petrosjan, L., Zaccour, G.: Time-consistent Shapley value allocation of pollution cost reduction. J. Econ. Dyn. Control 7, 381–398 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Plourde, C.G., Yeung, D.: Harvesting of a transboundary replenishable fish stock: a noncooperative game solution. Mar. Resour. Econ. 6, 57–70 (1989)

    Article  Google Scholar 

  36. Pusillo, L., Tijs, S.: E-equilibria for multicriteria games. Ann. ISDG 12, 217–228 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Rao, S.S., Freiheit, T.I.: Modified game theory approach to multiobjective optimization. J. Mech. Transm. Autom. Des. 113, 286–291 (1991)

    Article  Google Scholar 

  38. Rettieva, A.N.: Stable coalition structure in bioresource management problem. Ecol. Model. 235–236, 102–118 (2012)

    Article  Google Scholar 

  39. Rettieva, A.N.: A discrete-time bioresource management problem with asymmetric players. Autom. Remote Control 75(9), 1665–1676 (2014)

    Article  Google Scholar 

  40. Rettieva, A.N.: Equilibria in dynamic multicriteria games. IGTR 19(1), 1750002 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Rettieva, A.N.: Dynamic multicriteria games with finite horizon. Mathematics 6(9), 156 (2018)

    Article  MATH  Google Scholar 

  42. Rettieva, A.N.: Cooperation in dynamic multicriteria games with random horizons. J. Glob. Optim. 76(3), 455–470 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Salukvadze, M.E.: Vector-Valued Optimization Problems in Control Theory. Academic Press, New York (1979)

    MATH  Google Scholar 

  44. Sefrioui M., Nash genetic algorithms: examples and applications. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 509–516 (2000)

  45. Shapley, L.S.: Equilibrium points in games with vector payoffs. Naval Res. Log. Q. 6, 57–61 (1959)

    Article  MathSciNet  Google Scholar 

  46. Sim, K., Lee, D., Kim, J.Y.: Game theory based coevolutionary algorithm: a new computational coevolutionary approach. Int. J. Control Autom. Syst. 2, 463–474 (2004)

    Google Scholar 

  47. Sorger, G.: Recursive Nash bargaining over a productive assert. J. Econ. Dyn. Control 30, 2637–2659 (2006)

    Article  MATH  Google Scholar 

  48. Tang, Z., Desideri, J.A., Periaux, J.: Multi-criterion aerodynamic shape-design optimization and inverse problems using control theory and Nash games. J. Optim. Theory Appl. 135, 599–622 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Voorneveld, M., Vermeulen, D., Borm, P.: Axiomatizations of Pareto equilibria in multicriteria games. Games Econ. Behav. 28, 146–154 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  50. Voorneveld, M., Grahn, S., Dufwenberg, M.: Ideal equilibria in noncooperative multicriteria games. Math. Methods Oper. Res. 52, 65–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zafari F., Li J., Leung K.K., Towsley D., Swami A.: A game-theoretic approach to multi-objective resource sharing and allocation in mobile edge clouds. arXiv:1808.06937v2 (2018)

  52. Zeleny, M.: Compromising Programming, Multiple Criteria Decision Making. University of South Carolina Press, Columbia (1973)

    Google Scholar 

  53. Zeleny, M.: Multiple Criteria Decision Making. McGraw-Hill, New York (1982)

    MATH  Google Scholar 

  54. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evolut. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shandong province “Double-Hundred Talent Plan” (No. WST2017009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna N. Rettieva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Proof of rationality

Consider problem (5) with the rationality conditions. To construct cooperative behavior we should maximize the sum of the Nash products or equally minimize

$$\begin{aligned} H^c=(-V_1^{1c}+J_1^{1N})(V_1^{2c}-J_1^{2N}) +(-V_2^{1c}+J_2^{1N})(V_2^{2c}-J_2^{2N})\rightarrow \min _{u_{1t},u_{2t}} \end{aligned}$$

subject to

$$\begin{aligned}&J_1^{1N} - V_{1}^{1c} \le 0, \\&J_1^{2N} - V_{1}^{2c} \le 0, \\&J_2^{1N} - V_{2}^{1c} \le 0, \\&J_2^{2N} - V_{2}^{2c} \le 0, \\&\quad -(\varepsilon x_t -u_{1t}-u_{2t}) \le 0,\\&u_{1t} \ge 0,\,\,\, u_{2t} \ge 0. \end{aligned}$$

For simplicity, we give the proof for the case in which the players’ criteria depend on their own strategies only, i.e., \(V_i^{jc}(u_{1t}^c,u_{2t}^c)=V_i^{jc}(u_{it})\), \(i,j=1,2\).

The Kuhn–Tucker (KT) conditions are applicable, and the Lagrangian takes the form

$$\begin{aligned} L= & {} (-V_1^{1c}+J_1^{1N})(V_1^{2c}-J_1^{2N}) +(-V_2^{1c}+J_2^{1N})(V_2^{2c}-J_2^{2N})+\\&+\lambda _{11}(J_1^{1N} - V_{1}^{1c})+\lambda _{12}(J_1^{2N} - V_{1}^{2c})+\lambda _{21}(J_2^{1N} - V_{2}^{1c})+\lambda _{22}(J_2^{2N} - V_{2}^{2c})-\\&- \lambda _3 (\varepsilon x_t -u_{1t} -u_{2t}). \end{aligned}$$

First, we can eliminate the multiplier \(\lambda _3\) as the KT conditions for it are

$$\begin{aligned}&\varepsilon x_ -u_{1t}-u_{2t} \ge 0 ,\\&\quad \lambda _3 (\varepsilon x_t -u_{1t}-u_{2t})=0. \end{aligned}$$

If we assume that \(\lambda _3 > 0,\) then \(\varepsilon x_t -u_{1t}-u_{2t}=0\) and \(V_{i}^{jc}(u_{i\tau })=0\) for \(\tau =t,\ldots ,m\), \(i,j=1,2\), which obviously contradicts the rationality conditions.

Thus, we consider the KT conditions for the four Lagrange multipliers and one time instant \(t=1,\ldots ,m.\) Hence, t can be omitted:

$$\begin{aligned}&-(V_1^{1c})'(V_1^{2c}-V_1^{2N}+\lambda _{11})+(V_1^{2c})'(-V_1^{1c}+V_1^{1N}-\lambda _{12}) \ge 0, \nonumber \\&\quad u_1 \Bigl [ -(V_1^{1c})'(V_1^{2c}-V_1^{2N}+\lambda _{11})+(V_1^{2c})'(-V_1^{1c}+V_1^{1N}-\lambda _{12}) \Bigr ] =0 , \end{aligned}$$
(14)
$$\begin{aligned}&-(V_2^{1c})'(V_2^{2c}-V_2^{2N}+\lambda _{21})+(V_2^{2c})'(-V_2^{1c}+V_2^{1N}-\lambda _{22}) \ge 0, \nonumber \\&\quad u_2 \Bigl [ -(V_2^{1c})'(V_2^{2c}-V_2^{2N}+\lambda _{21})+(V_2^{2c})'(-V_2^{1c}+V_2^{1N}-\lambda _{22}) \Bigr ] =0 , \end{aligned}$$
(15)
$$\begin{aligned}&V_1^{1c} - J_1^{1N} \ge 0 , \end{aligned}$$
(16)
$$\begin{aligned}&\lambda _{11}(V_1^{1c} - J_1^{1N})=0, \end{aligned}$$
(17)
$$\begin{aligned}&V_1^{2c} - J_1^{2N} \ge 0 , \end{aligned}$$
(18)
$$\begin{aligned}&\lambda _{12}(V_1^{2c} - J_1^{2N})=0, \end{aligned}$$
(19)
$$\begin{aligned}&V_2^{1c} - J_2^{1N} \ge 0 , \end{aligned}$$
(20)
$$\begin{aligned}&\lambda _{21}(V_2^{1c} - J_2^{1N})=0, \end{aligned}$$
(21)
$$\begin{aligned}&V_2^{2c} - J_2^{2N} \ge 0 , \end{aligned}$$
(22)
$$\begin{aligned}&\lambda _{22}(V_2^{2c} - J_2^{2N})=0, \nonumber \\&u_1 \ge 0,\,\, u_2 \ge 0, \,\, \lambda _{ij} \ge 0,\,\, i,j=1,2. \end{aligned}$$
(23)
  1. 1.

    Consider the case \(\lambda _{ij}>0\), \(i,j=1.2.\) From (17), (19), (21), and (23) it follows that

    $$\begin{aligned} V_1^{1c} - J_{1}^{1N}=0, \,\, V_1^{2c} - J_{1}^{2N}=0, \,\,V_2^{1c} - J_{2}^{1N}=0, \,\,V_2^{2c} - J_{2}^{2N}=0. \end{aligned}$$

    If any of the strategies \(u_i\), \(i=1,2\), is equal to zero, then conditions (16), (18) or (20), (22) are not satisfied. Hence, \(u_i>0\). In this case, the cooperative behavior coincides with the noncooperative one, \(u_1=u_1^N\) and \(u_2=u_2^N,\) and the goal function \(H^c\) is equal to zero.

  2. 2.

    Consider the case \(\lambda _{11}=0\), \(\lambda _{12} >0\), \(\lambda _{21} >0\), \(\lambda _{22} >0.\) From (19), (21), and (23) it follows that

    $$\begin{aligned} V_1^{2c} - J_{1}^{2N}=0, \,\,V_2^{1c} - J_{2}^{1N}=0, \,\,V_2^{2c} - J_{2}^{2N}=0. \end{aligned}$$

    By analogy, \(u_i>0\), \(i=1,2,\) and from (14) and (15) it follows that

    $$\begin{aligned} \left\{ \begin{array}{l} (V_1^{2c})'(-V_1^{1c}+V_1^{1N}-\lambda _{12})=0,\\ -(V_2^{1c})'\lambda _{21}-(V_2^{2c})'\lambda _{22}=0. \end{array} \right. \end{aligned}$$

    Consequently,

    $$\begin{aligned} -V_1^{1c}+V_1^{1N}=\lambda _{12}>0, \end{aligned}$$

    which obviously contradicts condition (16).

    Similarly, in all the cases where one of the Lagrange multipliers is equal to zero, we will naturally arrive in contradiction.

  3. 3.

    Consider the case \(\lambda _{11}=0\), \(\lambda _{12}=0\), \(\lambda _{21} >0\), \(\lambda _{22} >0.\) From (21) and (23) it follows that

    $$\begin{aligned} V_2^{1c} - J_{2}^{1N}=0, \,\,V_2^{2c} - J_{2}^{2N}=0. \end{aligned}$$

    Hence, the cooperative behavior of player 2 coincides with the noncooperative one, \(u_2=u_2^N,\) and the strategy of player 1 can be obtained from the equation

    $$\begin{aligned} -(V_1^{1c})'(V_1^{2c}-V_1^{2N})+(V_1^{2c})'(-V_1^{1c}+V_1^{1N})=0. \end{aligned}$$
    (24)

    Here, the goal function becomes

    $$\begin{aligned} H^c=(-V_1^{1c}+V_1^{1N})(V_1^{2c}-V_1^{2N}). \end{aligned}$$
    (25)
  4. 4.

    Similarly, if \(\lambda _{11}>0\), \(\lambda _{12}>0\), \(\lambda _{21}=0\), and \(\lambda _{22}=0\), then the cooperative behavior of player 1 coincides with the noncooperative one, \(u_1=u_1^N,\) and the strategy of player 2 can be obtained from the equation

    $$\begin{aligned} -(V_2^{1c})'(V_2^{2c}-V_2^{2N})+(V_2^{2c})'(-V_2^{1c}+V_2^{1N})=0. \end{aligned}$$
    (26)

    Here, the goal function becomes

    $$\begin{aligned} H^c=(-V_2^{1c}+V_2^{1N})(V_2^{2c}-V_2^{2N}). \end{aligned}$$
    (27)
  5. 5.

    Consider the case \(\lambda _{11}=0\), \(\lambda _{12} >0\), \(\lambda _{21} =0\), \(\lambda _{22} >0.\) From (19) and (23) it follows that

    $$\begin{aligned} V_1^{2c} - J_{1}^{2N}=0, \,\,V_2^{2c} - J_{2}^{2N}=0. \end{aligned}$$

    Similarly, \(u_i>0\), \(i=1,2\), and from (14) and (15) we obtain

    $$\begin{aligned} \left\{ \begin{array}{c} (V_1^{2c})'(-V_1^{1c}+V_1^{1N}-\lambda _{12})=0,\\ (V_2^{2c})'(-V_2^{1c}+V_2^{1N}-\lambda _{22})=0. \end{array} \right. \end{aligned}$$

    Consequently,

    $$\begin{aligned} -V_1^{1c}+V_1^{1N}=\lambda _{12}>0, \,\, -V_2^{1c}+V_2^{1N}=\lambda _{22}>0, \end{aligned}$$

    which obviously contradict conditions (16), (20).

    By analogy, if \(\lambda _{11}>0\), \(\lambda _{12}=0\), \(\lambda _{21}>0\), and \(\lambda _{22}=0,\) we will arrive in contradiction.

  6. 6.

    Finally, consider the case \(\lambda _{ij}=0\), \(i,j=1,2\).Similarly, it is easy to check that \(u_i>0\), \(i=1,2\), the minimum is achieved at an interior point and can be found via the first-order optimality conditions (24) and (26).

    Here, the goal function becomes

    $$\begin{aligned} H^c=(-V_1^{1c}+V_1^{1N})(V_1^{2c}-V_1^{2N})+(-V_2^{1c}+V_2^{1N})(V_2^{2c}-V_2^{2N}), \end{aligned}$$

    which is less than zero, (25) and (27).

Thus, the presented scheme gives a solution if the rationality conditions are satisfied.

If all the criteria depend on the strategies of both players, the outline of the proof is the same but with more complicated equations.

B Proof of Proposition 2

First, consider problem (12) for the one-stage game. Let the initial size of the population be x.

As usual, we find the players’ strategies in the linear class \(u_{i1}^c= \gamma _{i1} x\), \(i=1,2\). As a result, problem (12) takes the form

$$\begin{aligned} p_1(\gamma _{11}^c-N_1)(-(\gamma _{11}^c)^2+M_1)+p_2(\gamma _{21}^c-N_2)(-(\gamma _{21}^c)^2+M_2) \rightarrow \max _{\gamma _{11}^c,\gamma _{21}^c}. \end{aligned}$$

From the first-order optimality conditions we obtain

$$\begin{aligned} \gamma _{11}^c=\frac{N_1+((N_1)^2+3M_1)^{1/2}}{3}, \,\, \gamma _{21}^c=\frac{N_2+((N_2)^2+3M_2)^{1/2}}{3}. \end{aligned}$$

Now, we consider problem (12) for the two-stage game. To determine cooperative strategies we solve the following problem:

$$\begin{aligned}&p_1(\gamma _{12}^c+\delta _1\gamma _{11}^c(\varepsilon -\gamma _{12}^c-\gamma _{22}^c)-N_1)(-(\gamma _{12}^c)^2-(\gamma _{11}^c)^2(\varepsilon -\gamma _{12}^c-\gamma _{22}^c)+M_1)\\\,&\quad +p_2(\gamma _{22}^c+\delta _2\gamma _{21}^c(\varepsilon -\gamma _{12}^c-\gamma _{22}^c)-N_2)\cdot \\&\quad \cdot (-(\gamma _{22}^c)^2-(\gamma _{21}^c)^2(\varepsilon -\gamma _{12}^c-\gamma _{22}^c)+M_2). \rightarrow \max _{\gamma _{11}^c,\gamma _{21}^c,\gamma _{12}^c,\gamma _{22}^c}. \end{aligned}$$

The first-order optimality conditions are given by

$$\begin{aligned}&p_1(D_2-2\gamma _{12}^cD_1)\nonumber \\&\quad -p_1\delta _1\gamma _{11}^c(D_2-2\gamma _{11}^c(\varepsilon -\gamma _{12}^c-\gamma _{22}^c)D_1) -p_2\delta _2\gamma _{21}^c(D_4-2\gamma _{21}^c(\varepsilon -\gamma _{12}^c-\gamma _{22}^c)D_3), \end{aligned}$$
(28)
$$\begin{aligned}&p_2(D_4-2\gamma _{22}^cD_3)\nonumber \\&\quad -p_2\delta _2\gamma _{21}^c(D_4-2\gamma _{21}^c(\varepsilon -\gamma _{12}^c-\gamma _{22}^c)D_3) -p_1\delta _1\gamma _{11}^c(D_2-2\gamma _{11}^c(\varepsilon -\gamma _{12}^c-\gamma _{22}^c)D_1), \end{aligned}$$
(29)
$$\begin{aligned}&D_2=2\gamma _{11}^c(\varepsilon -\gamma _{12}^c-\gamma _{22}^c)D_1, \end{aligned}$$
(30)
$$\begin{aligned}&D_4=2\gamma _{21}^c(\varepsilon -\gamma _{12}^c-\gamma _{22}^c)D_3, \end{aligned}$$
(31)

where \(D_1=\gamma _{12}^c+\delta _1\gamma _{11}^c(\varepsilon -\gamma _{12}^c-\gamma _{22}^c)-N_1\), \(D_2=-(\gamma _{12}^c)^2-(\gamma _{11}^c)^2(\varepsilon -\gamma _{12}^c-\gamma _{22}^c)+M_1\), \(D_3=\gamma _{22}^c+\delta _2\gamma _{21}^c(\varepsilon -\gamma _{12}^c-\gamma _{22}^c)-N_2\), \(D_4-(\gamma _{22}^c)^2-(\gamma _{21}^c)^2(\varepsilon -\gamma _{12}^c-\gamma _{22}^c)+M_2)\).

Substituting (30) and (31) into (28) and (29) yields

$$\begin{aligned} D_2= & {} 2\gamma _{12}^cD_1,\\ D_4= & {} 2\gamma _{22}^cD_3. \end{aligned}$$

In view of (30) and (31), these imply

$$\begin{aligned} \gamma _{11}^c(\varepsilon -\gamma _{12}^c-\gamma _{22}^c)=\gamma _{12}^c,\\ \gamma _{21}^c(\varepsilon -\gamma _{12}^c-\gamma _{22}^c)=\gamma _{22}^c, \end{aligned}$$

and consequently

$$\begin{aligned} \gamma _{12}^c=\frac{\varepsilon \gamma _{11}^c}{1+\gamma _{11}^c+\gamma _{21}^c}, \,\,\gamma _{22}^c=\frac{\varepsilon \gamma _{21}^c}{1+\gamma _{11}^c+\gamma _{21}^c}. \end{aligned}$$

Thus, we have expressed all the parameters via the players’ strategies at the last stage; to determine them we need to solve one of equations (28)–(31). From (29) we obtain

$$\begin{aligned} \gamma _{21}^c=(1+\gamma _{11}^c)\frac{-M_2-\varepsilon N_2+\varepsilon (N_2^2+3(1+\delta _2))^{1/2}}{M_2+2\varepsilon N_2-3\varepsilon ^2(1+\delta _2)}, \end{aligned}$$

and \(\gamma _{11}^c\) is found from the equation

$$\begin{aligned} (\gamma _{11}^c)^2(M_1+2\varepsilon N_1-3\varepsilon ^(1+\delta _1))+\gamma _{11}^c(M_1+\varepsilon N_1)(1+\gamma _{21}^c)+M_1(1+\gamma _{21}^c)^2=0. \end{aligned}$$

The process can be repeated for the m-stage game, and we will finally arrive in the cooperative strategies as specified by Proposition 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rettieva, A.N. Dynamic multicriteria games with asymmetric players. J Glob Optim 83, 521–537 (2022). https://doi.org/10.1007/s10898-020-00929-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-020-00929-5

Keywords

Mathematics Subject Classification

Navigation