Skip to main content
Log in

Finding optimal points for expensive functions using adaptive RBF-based surrogate model via uncertainty quantification

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Global optimization of expensive functions has important applications in physical and computer experiments. It is a challenging problem to develop efficient optimization scheme, because each function evaluation can be costly and the derivative information of the function is often not available. We propose a novel global optimization framework using adaptive radial basis functions (RBF) based surrogate model via uncertainty quantification. The framework consists of two iteration steps. It first employs an RBF-based Bayesian surrogate model to approximate the true function, where the parameters of the RBFs can be adaptively estimated and updated each time a new point is explored. Then it utilizes a model-guided selection criterion to identify a new point from a candidate set for function evaluation. The selection criterion adopted here is a sample version of the expected improvement criterion. We conduct simulation studies with standard test functions, which show that the proposed method has some advantages, especially when the true function has many local optima. In addition, we also propose modified approaches to improve the search performance for identifying optimal points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andrieu, C., De Freitas, N., Doucet, A.: Robust full Bayesian learning for radial basis networks. Neural Comput. 13(10), 2359–2407 (2001)

    Article  Google Scholar 

  2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    Book  Google Scholar 

  4. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations, vol. 12. Cambridge University Press, New York (2003)

    Book  Google Scholar 

  5. Chen, R.B., Wang, W., Wu, C.F.J.: Building surrogates with overcomplete bases in computer experiments with applications to bistable laser diodes. IIE Trans. 43(1), 39–53 (2011)

    Article  Google Scholar 

  6. Chen, R.-B., Wang, W., Wu, C.F.J.: Sequential designs based on bayesian uncertainty quantification in sparse representation surrogate modeling. Technometrics 59(2), 139–152 (2017)

    Article  MathSciNet  Google Scholar 

  7. Chipman, H., Hamada, M., Wu, C.F.J.: A Bayesian variable-selection approach for analyzing designed experiments with complex aliasing. Technometrics 39(4), 372–381 (1997)

    Article  Google Scholar 

  8. Chipman, H., Ranjan, P., Wang, W.: Sequential design for computer experiments with a flexible Bayesian additive model. Can. J. Stat. 40, 663–678 (2012)

    Article  MathSciNet  Google Scholar 

  9. Fasshauer, G.E., Zhang, J.G.: On choosing “optimal” shape parameters for RBF approximation. Numer. Algorithms 45(1–4), 345–368 (2007)

    Article  MathSciNet  Google Scholar 

  10. George, E.I., McCulloch, R.E.: Variable selection via Gibbs sampling. J. Am. Stat. Assoc. 88(423), 881–889 (1993)

    Article  Google Scholar 

  11. Gutmann, H.M.: A radial basis function method for global optimization. J. Glob. Opt. 19(3), 201–227 (2001)

    Article  MathSciNet  Google Scholar 

  12. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Opt. 21(4), 345–383 (2001)

    Article  MathSciNet  Google Scholar 

  13. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive Black-Box functions. J. Glob. Opt. 13(4), 455–492 (1998)

    Article  MathSciNet  Google Scholar 

  14. Koutsourelakis, P.S.: Accurate uncertainty quantification using inaccurate computational models. SIAM J. Sci. Comput. 31(5), 3274–3300 (2009)

    Article  MathSciNet  Google Scholar 

  15. Liang, J., Qu, B., Suganthan, P.: roblem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Technical report 201311 (2013)

  16. Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for seeking the extremum. Towards Glob. Optim. 2, 117–129 (1978)

    MATH  Google Scholar 

  17. Morris, M.D., Mitchell, T.J.: Exploratory designs for computer experiment. J. Stat. Plan. Inference 43, 381–402 (1995)

    Article  Google Scholar 

  18. Oefelein, J.C., Yang, V.: Modeling high-pressure mixing and combustion processes in liquid rocket engines. J. Propul. Power 14(5), 843–857 (1998)

    Article  Google Scholar 

  19. Picheny, V., Wagner, T., Ginsbourger, D.: A benchmark of kriging-based infill criteria for noisy optimization. Struct. Multidiscip. Optim. 48(3), 607–626 (2013)

    Article  Google Scholar 

  20. Regis, R.G., Shoemaker, C.A.: A stochastic radial basis function method for the global optimization of expensive functions. INFORMS J. Comput. 19(4), 497–509 (2007)

    Article  MathSciNet  Google Scholar 

  21. Rönkkönen, J., Li, X., Kyrki, V.: A framework for generating tunable test function for multimodal optimization. Soft. Comput. 15, 1689–1706 (2011)

    Article  Google Scholar 

  22. Santner, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer Experiments. Springer, New York (2013)

    MATH  Google Scholar 

  23. Torn, A., Žilinskas, A.: Global Optimization. Springer, Berlin (1989)

    Book  Google Scholar 

  24. Žilinskas, A.: On similarities between two models of global optimization: statistical models and radial basis functions. J. Glob. Opt. 48, 173–182 (2010)

    Article  MathSciNet  Google Scholar 

  25. Žilinskas, A., Zhigljavsky, A.: Stochastic global optimization: a review on the occasion of 25 years of informatica. Informatica 27, 229–256 (2016)

    Article  Google Scholar 

  26. Zellner, A.: On assessing prior distributions and Bayesian regression analysis with g-prior distributions. Bayesian Inference Decis. Tech. Essays Honor Bruno De Finetti 6, 233–243 (1986)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Chen’s research is supported by Ministry of Science and Technology (MOST) of Taiwan 104-2918-I-006-005 and the Mathematics Division of the National Center for Theoretical Sciences in Taiwan. Wu’s research is supported by ARO W911NF-17-1-0007 and NSF DMS-1564438.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. F. Jeff Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, RB., Wang, Y. & Wu, C.F.J. Finding optimal points for expensive functions using adaptive RBF-based surrogate model via uncertainty quantification. J Glob Optim 77, 919–948 (2020). https://doi.org/10.1007/s10898-020-00916-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-020-00916-w

Keywords

Navigation