Skip to main content
Log in

An abstract proximal point algorithm

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The proximal point algorithm is a widely used tool for solving a variety of convex optimization problems such as finding zeros of maximally monotone operators, fixed points of nonexpansive mappings, as well as minimizing convex functions. The algorithm works by applying successively so-called “resolvent” mappings associated to the original object that one aims to optimize. In this paper we abstract from the corresponding resolvents employed in these problems the natural notion of jointly firmly nonexpansive families of mappings. This leads to a streamlined method of proving weak convergence of this class of algorithms in the context of complete CAT(0) spaces (and hence also in Hilbert spaces). In addition, we consider the notion of uniform firm nonexpansivity in order to similarly provide a unified presentation of a case where the algorithm converges strongly. Methods which stem from proof mining, an applied subfield of logic, yield in this situation computable and low-complexity rates of convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ariza-Ruiz, D., Leuştean, L., López-Acedo, G.: Firmly nonexpansive mappings in classes of geodesic spaces. Trans. Am. Math. Soc. 366, 4299–4322 (2014)

    Article  MathSciNet  Google Scholar 

  2. Ariza-Ruiz, D., López-Acedo, G., Nicolae, A.: The asymptotic behavior of the composition of firmly nonexpansive mappings. J. Optim. Theory Appl. 167, 409–429 (2015)

    Article  MathSciNet  Google Scholar 

  3. Bačák, M.: The proximal point algorithm in metric spaces. Israel J. Math. 194, 689–701 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bačák, M.: Convex Analysis and Optimization in Hadamard Spaces. De Gruyter, Berlin (2014)

    MATH  Google Scholar 

  5. Bačák, M., Kohlenbach, U.: On proximal mappings with Young functions in uniformly convex Banach spaces. J. Convex Anal. 25 (2018)

  6. Bačák, M., Reich, S.: The asymptotic behavior of a class of nonlinear semigroups in Hadamard spaces. J. Fixed Point Theory Appl. 16, 189–202 (2014)

    Article  MathSciNet  Google Scholar 

  7. Bačák, M., Searston, I., Sims, B.: Alternating projections in CAT(0) spaces. J. Math. Anal. Appl. 385, 599–607 (2012)

    Article  MathSciNet  Google Scholar 

  8. Bartz, S., Bauschke, H., Moffat, S., Wang, X.: The resolvent average of monotone operators: dominant and recessive properties. SIAM J. Optim. 26, 602–634 (2016)

    Article  MathSciNet  Google Scholar 

  9. Bauschke, H., Combettes, P.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. Springer, Berlin (2017)

    Book  Google Scholar 

  10. Berg, I.D., Nikolaev, I.G.: Quasilinearization and curvature of Alexandrov spaces. Geom. Dedic. 133, 195–218 (2008)

    Article  Google Scholar 

  11. Bonnel, H., Iusem, A.N., Svaiter, B.F.: Proximal methods in vector optimization. SIAM J. Optim. 15, 953–970 (2005)

    Article  MathSciNet  Google Scholar 

  12. Brézis, H., Lions, P.L.: Produits infinis de resolvantes. Israel J. Math. 29, 329–345 (1978)

    Article  MathSciNet  Google Scholar 

  13. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Springer, Berlin (1999)

    Book  Google Scholar 

  14. Briseid, E.M.: Logical aspects of rates of convergence in metric spaces. J. Symb. Logic 74, 1401–1428 (2009)

    Article  MathSciNet  Google Scholar 

  15. Browder, F.E.: Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces. Arch. Ration. Mech. Anal. 24, 82–90 (1967)

    Article  Google Scholar 

  16. Ceng, L.C., Mordukhovich, B.S., Yao, J.C.: Hybrid approximate proximal method with auxiliary variational inequality for vector optimization. J. Optim. Theory Appl. 146, 267–303 (2010)

    Article  MathSciNet  Google Scholar 

  17. Dhompongsa, S., Kirk, W.A., Sims, B.: Fixed points of uniformly Lipschitzian mappings. Nonlinear Anal. 65, 762–772 (2006)

    Article  MathSciNet  Google Scholar 

  18. Espínola, R., Fernández-León, A.: CAT(\(\kappa \))-spaces, weak convergence and fixed points. J. Math. Anal. Appl. 353, 410–427 (2009)

    Article  MathSciNet  Google Scholar 

  19. Gerhardy, P., Kohlenbach, U.: General logical metatheorems for functional analysis. Trans. Am. Math. Soc. 360, 2615–2660 (2008)

    Article  MathSciNet  Google Scholar 

  20. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  21. Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)

    Article  MathSciNet  Google Scholar 

  22. Halpern, B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)

    Article  MathSciNet  Google Scholar 

  23. Iusem, A.N., Pennanen, T., Svaiter, B.F.: Inexact variants of the proximal point algorithm without monotonicity. SIAM J. Optim. 13, 1080–1097 (2003)

    Article  MathSciNet  Google Scholar 

  24. Jost, J.: Equilibrium maps between metric spaces. Calc. Var. Partial Differ. Equ. 2, 173–204 (1994)

    Article  MathSciNet  Google Scholar 

  25. Jost, J.: Convex functionals and generalized harmonic maps into spaces of non positive curvature. Comment. Math. Helvetici 70, 659–673 (1995)

    Article  MathSciNet  Google Scholar 

  26. Kaplan, A., Tichatschke, R.: Proximal point methods and nonconvex optimization. J. Global Optim. 13, 389–406 (1998)

    Article  MathSciNet  Google Scholar 

  27. Kirk, W.A.: Geodesic Geometry and Fixed Point Theory, Seminar of Mathematical Analysis, Colecc. Abierta, vol. 64, pp. 195–225. Universidad de Sevilla publication, Sevilla (2003)

    Google Scholar 

  28. Kirk, W.A., Panyanak, B.: A concept of convergence in geodesic spaces. Nonlinear Anal. 68, 3689–3696 (2008)

    Article  MathSciNet  Google Scholar 

  29. Kohlenbach, U.: Theorie der majorisierbaren und stetigen Funktionale und ihre Anwendung bei der Extraktion von Schranken aus inkonstruktiven Beweisen: Effektive Eindeutigkeitsmodule bei besten Approximationen aus ineffektiven Beweisen. Ph.D. thesis, Goethe University Frankfurt (1990)

  30. Kohlenbach, U.: Some logical metatheorems with applications in functional analysis. Trans. Am. Math. Soc. 357, 89–128 (2005)

    Article  MathSciNet  Google Scholar 

  31. Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and Their use in Mathematics. Springer Monographs in Mathematics. Springer, Berlin (2008)

    MATH  Google Scholar 

  32. Kohlenbach, U.: Recent progress in proof mining in nonlinear analysis. IFCoLog J. Log. Appl. 10, 3357–3406 (2017)

    Google Scholar 

  33. Kohlenbach, U.: Proof-theoretic methods in nonlinear analysis; To Appear in Proceedings of the ICM2018 (2018)

  34. Kohlenbach, U., Leuştean, L., Nicolae, A.: Quantitative results on Fejér monotone sequences. Commun. Contemp. Math. 20, 1750015 (2018)

    Article  MathSciNet  Google Scholar 

  35. Kohlenbach, U., López-Acedo, G., Nicolae, A.: Quantitative asymptotic regularity for the composition of two mappings. Optimization 66, 1291–1299 (2017)

    Article  MathSciNet  Google Scholar 

  36. Kohlenbach, U., López-Acedo, G., Nicolae, A.: Moduli of Regularity and Rates of Convergence for Fejér Monotone Sequences. arXiv:1711.02130 [math.OC] (2017)

  37. Kohlenbach, U., Oliva, P.: Proof mining: a systematic way of analysing proofs in mathematics. Proc. Steklov Inst. Math. 242, 136–164 (2003)

    MATH  Google Scholar 

  38. Koutsoukou-Argyraki, A.: Effective rates of convergence for the resolvents of accretive operators. Numer. Funct. Anal. Optim. 38, 1601–1613 (2017)

    Article  MathSciNet  Google Scholar 

  39. Kuczumow, T.: An almost convergence and its applications. Ann. Univ. Mariae Curie-Sklodowska Sect. A 32, 79–88 (1980)

    MathSciNet  MATH  Google Scholar 

  40. Leuştean, L.: Nonexpansive iterations in uniformly convex \(W\)-hyperbolic spaces. In: Leizarowitz, A., Mordukhovich, B.S., Shafrir, I., Zaslavski, A. (eds.) Nonlinear Analysis and Optimization I: Nonlinear Analysis, Contemporary Mathematics, vol. 513, pp. 193–209. American Mathematical Society, Providence (2010)

    Chapter  Google Scholar 

  41. Leuştean, L., Sipoş, A.: An application of proof mining to the proximal point algorithm in CAT(0) spaces. In: Bellow, A., Calude, C., Zamfirescu, T. (eds.) Mathematics Almost Everywhere. In Memory of Solomon Marcus. World Scientific, Singapore (2018)

    Google Scholar 

  42. Leuştean, L., Sipoş, A.: Effective strong convergence of the proximal point algorithm in CAT(0) spaces, arXiv:1801.02179 [math.OC]; To appear in Journal of Nonlinear and Variational Analysis (2018)

  43. Lim, T.C.: Remarks on some fixed point theorems. Proc. Am. Math. Soc. 60, 179–182 (1976)

    Article  MathSciNet  Google Scholar 

  44. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev. Française Informat. Recherche Opérationnelle 4, 154–158 (1970)

    MathSciNet  MATH  Google Scholar 

  45. Mayer, U.F.: Gradient flows on nonpositively curved metric spaces and harmonic maps. Commun. Anal. Geom. 6, 199–253 (1998)

    Article  MathSciNet  Google Scholar 

  46. Papadopoulos, A.: Metric Spaces, Convexity and Nonpositive Curvature, IRMA Lectures in Mathematics and Theoretical Physics 6, European Mathematical Society (2005)

  47. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Adriana Nicolae was partially supported by DGES (MTM2015-65242-C2-1-P). She would also like to acknowledge the Juan de la Cierva - Incorporación Fellowship Program of the Spanish Ministry of Economy and Competitiveness. Laurenţiu Leuştean and Andrei Sipoş were partially supported by a grant of the Romanian National Authority for Scientific Research, CNCS - UEFISCDI, project number PN-II-ID-PCE-2011-3-0383.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurenţiu Leuştean.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leuştean, L., Nicolae, A. & Sipoş, A. An abstract proximal point algorithm. J Glob Optim 72, 553–577 (2018). https://doi.org/10.1007/s10898-018-0655-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-018-0655-9

Keywords

Mathematics Subject Classification

Navigation