Skip to main content
Log in

Semidefinite programming relaxation methods for global optimization problems with sparse polynomials and unbounded semialgebraic feasible sets

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We propose a hierarchy of semidefinite programming (SDP) relaxations for polynomial optimization with sparse patterns over unbounded feasible sets. The convergence of the proposed SDP hierarchy is established for a class of polynomial optimization problems. This is done by employing known sums-of-squares sparsity techniques of Kojima and Muramatsu Comput Optim Appl 42(1):31–41, (2009) and Lasserre SIAM J Optim 17:822–843, (2006) together with a representation theorem for polynomials over unbounded sets obtained recently in Jeyakumar et al. J Optim Theory Appl 163(3):707–718, (2014). We demonstrate that the proposed sparse SDP hierarchy can solve some classes of large scale polynomial optimization problems with unbounded feasible sets using the polynomial optimization solver SparsePOP developed by Waki et al. ACM Trans Math Softw 35:15 (2008).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen, M., Vandenberghe, L., Dahl, J.: Linear matrix inequalities with chordal sparsity patterns and applications to robust quadratic optimization. In: Proceedings of IEEE International Symposium on Computer-Aided Control System Design (CACSD) (2010)

  2. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Candés, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51, 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Candés, E.J., Wakin, M.B., Boyd, S.: Enhancing sparsity by re-weighted \(l_1\) minimization. J. Fourier Anal. Appl. 14(5), 877–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Demmel, J., Nie, J.W.: Sparse SOS relaxations for minimizing functions that are summations of small polynomials. SIAM J. Optim. 19(4), 1534–1558 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Feng, M., Mitchell, J.E., Pang, J.S., Shen, X., Wachter, A.: Complementarity formulations of \(l_0\)-norm optimization problems. http://www.optimization-online.org/DB_HTML/2013/09/4053.html

  7. Feng, C., Lagoa, C., Sznaier, M.: Hybrid system identification via sparse polynomial optimization. In: American Control Conference (ACC), pp. 160–165 (2010)

  8. Fukuda, M., Kojima, M., Murota, K., Nakata, K.: Exploiting sparsity in semidefinite programming via matrix completion I: general framework. SIAM J. Optim. 11, 647–674 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ghaddar, B., Marecek, J., Mevissen, M.: Optimal power flow as a polynomial optimization problem. IEEE Trans. Power Syst. 99, 1–8 (2015)

    Google Scholar 

  10. Hà, H.V., Phạm, T.S.: Representations of positive polynomials and optimization on noncompact semi-algebraic sets. SIAM J. Optim. 20, 3082–3103 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jeyakumar, V., Lasserre, J.B., Li, G.: On polynomial optimization over non-compact semi-algebraic sets. J. Optim. Theory Appl. 163(3), 707–718 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jeyakumar, V., Li, G., Pham, T.S.: Convergence of the Lasserre hierarchy of SDP relaxations for convex polynomial programs without compactness. Oper. Res. Lett. 42, 34–40 (2014)

    Article  MathSciNet  Google Scholar 

  13. Jeyakumar, V., Li, G.: A new class of alternative theorems for SOS-convex inequalities and robust optimization. Appl. Anal. 94, 56–74 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jeyakumar, V., Li, G.: Exact SDP relaxations for classes of nonlinear semidefinite programming problems. Oper. Res. Lett. 40, 529–536 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kleniati, P., Parpas, P., Rustem, B.: Partitioning procedure for polynomial optimization. J. Glob. Optim. 48, 549–567 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kim, S., Kojima, M., Mevissen, M., Yamashita, M.: Exploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite matrix completion. Math. Program. 129, 33–68 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim, S., Kojima, M., Waki, H., Yamashita, M.: Algorithm 920: SFSDP: a sparse version of full semidefinite programming relaxation for sensor network localization problems. ACM Trans. Math. Softw. 38, 1–19 (2012)

    Article  MathSciNet  Google Scholar 

  18. Kojima, M., Muramatsu, M.: A note on sparse SOS and SDP relaxations for polynomial optimization problems over symmetric cones. Comput. Optim. Appl. 42(1), 31–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications. Imperial College Press, London (2009)

    Book  Google Scholar 

  21. Lasserre, J.B.: Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM J. Optim. 17, 822–843 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lu, W.-S., Hinamoto, T.: Design of FIR filters with discrete coefficients via polynomial programming: towards the global solution. In: IEEE International Symposium on Circuit and Systems, pp. 2048–2051 (2007)

  23. Luo, Z.-Q., Sidiropoulos, N.D., Tseng, P., Zhang, S.: Approximation bounds for quadratic optimization with homogeneous quadratic constraints. SIAM J. Optim. 18, 1–28 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Marshall, M.: Positive Polynomials and Sums of Squares, Mathematical Surveys and Monographs, vol. 146. American Mathematical Society, Providence (2008)

    Book  Google Scholar 

  25. Nie, J.W.: Sum of squares method for sensor network localization. Comput. Optim. Appl. 43(2), 151–179 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nie, J.W.: An exact Jacobian SDP relaxation for polynomial optimization. Math. Program. 137(1–2), 225–255 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nie, J.: Optimality conditions and finite convergence of Lasserre’s hierarchy. Math. Program. 146, 97–121 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Parrilo, P.A.: Structured semidefinite programs and semi-algebraic geometry methods in robustness and optimization, Ph.D. thesis, California Institute of Technology (2000)

  29. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 41, 49–95 (1993)

    MathSciNet  MATH  Google Scholar 

  30. Scheiderer, C.: Sums of squares on real algebraic curves. Math. Z. 245, 725–760 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schmüdgen, K.: The K-moment problem for compact semi-algebraic sets. Math. Ann. 289, 203–206 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schweighofer, M.: Global optimization of polynomials using gradient tentacles and sums of squares. SIAM J. Optim. 17, 920–942 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Simon, F., Holger, R.: A Mathematical Introduction to Compressive Sensing, Applied and Numerical Harmonic Analysis, Chapter 15. Birkhauser/Springer, New York (2013)

    Google Scholar 

  34. Strum, J.F.: SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11—-12, 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  35. Vandenberghe, L., Andersen, M.: Chordal graphs and semidefinite optimization. Found. Trends Optim. 1, 241–433 (2014)

    Article  Google Scholar 

  36. Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17, 218–242 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Waki, H., Kim, S., Kojima, M., Muramtasu, M., Sugimoto, H.: Algorithm 883: SparsePOP: a sparse semidefinite programming relaxation of polynomial optimization problems. ACM Trans. Math. Softw. 35, 15 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Jeyakumar.

Additional information

The first and the fourth author were partially supported by a Grant from Australian Research Council. The second author was supported by NRF 2012-R1A1A2-038982 and NRF 2014-R1A2A1A11049618. The third author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2005378).

Appendix

Appendix

The polynomial optimization problem \((P_0)\) has a close relationship with the problem of finding the solution with the least number of nonzero components which satisfies a system of polynomial inequalities and simple bounds. Mathematically, the problem of finding the solution with the least number of nonzero components which satisfies a system of polynomial inequalities and simple bounds, can be formulated as

where \(n_l \in \mathbb {N}\), \(l=1,\ldots ,q\), and \(\Vert x\Vert _0\) denotes the \(l_0\)-seminorm of the vector \(x \in \mathbb {R}^n\), which gives the number of nonzero components of the vector x.

In the case where \(q=1\), \(I_1=\{1,\ldots ,n\}\), \(g_j(x)=a_j^Tx-b_j\), \(j=1,\ldots ,m\), \(g_{j}(x)=-(a_j^Tx-b_j)\), \(j=m+1,\ldots ,2m\), the problem \((P_0')\) collapses to the sparse optimization problem which finds the solution with the least number of nonzero components satisfying simple bounds as well as linear equations \(Ax=b\) with more unknowns than equalities:

where \(A=(a_1,\ldots ,a_m)^T \in \mathbb {R}^{m \times n}\) \((m \le n)\), \(b=(b_1,\ldots ,b_m)^T \in \mathbb {R}^m\). We note that the standard sparse optimization problem which is given by

arises in signal processing and was examined, for example, [24, 33]. Moreover, problems \((P_1)\) and \((P_2)\) have the same optimal value if \(M> \Vert x^*\Vert _2^2\) for some solution \(x^*\) of problem \((P_2)\).

In fact, the problem \((P_0)\) and problem \((P_0')\) are equivalent in the sense that \(\min (P_0)=\min (P_0')\) and \((x^{1*}, \ldots , x^{q*})\in \mathbb {R}^{n_1} \times \cdots \times \mathbb {R}^{n_q}\) is a solution of problem \((P_0)\) if and only if \((x^{l*},w^{l*}) \in \mathbb {R}^{n_l} \times \mathbb {R}^{n_l}\), \(l=1,\ldots ,q\), is a solution of problem \((P_0')\) where \(w^{l*}=(w^{l*}_{i_1},\ldots ,w^{l*}_{i_{n_l}}) \in \mathbb {R}^{n_l}\) is defined by

$$\begin{aligned} w^{l*}_i=\left\{ \begin{array}{lll} 1 &{} \quad \text{ if } &{} x_i^{l*} \ne 0, \\ 0 &{} \quad \text{ if } &{} x_i^{l*} = 0. \end{array}\right. \ \ \ \ \ \ i \in I_l, \ l=1,\ldots ,q. \end{aligned}$$
(4.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeyakumar, V., Kim, S., Lee, G.M. et al. Semidefinite programming relaxation methods for global optimization problems with sparse polynomials and unbounded semialgebraic feasible sets. J Glob Optim 65, 175–190 (2016). https://doi.org/10.1007/s10898-015-0356-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0356-6

Keywords

Navigation