Skip to main content
Log in

Setting targets for surrogate-based optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In the context of surrogate-based optimization (SBO), most designers have still very little guidance on when to stop and how to use infill measures with target requirements (e.g., one-stage approach for goal seeking and optimization); the reason: optimum estimates independent of the surrogate and optimization strategy are seldom available. Hence, optimization cycles are typically stopped when resources run out (e.g., number of objective function evaluations/time) or convergence is perceived, and targets are empirically set which may affect the effectiveness and efficiency of the SBO approach. This work presents an approach for estimating the minimum (target) of the objective function using concepts from extreme order statistics which relies only on the training data (sample) outputs. It is assumed that the sample inputs are randomly distributed so the outputs can be considered a random variable, whose density function is bounded (a, b), with the minimum (a) as its lower bound. Specifically, an estimate of the minimum (a) is obtained by: (i) computing the bounds (using training data and the moment matching method) of a selected set of analytical density functions (catalog), and (ii) identifying the density function in the catalog with the best match to the sample outputs distribution and corresponding minimum estimate (a). The proposed approach makes no assumption about the nature of the objective functions, and can be used with any surrogate, and optimization strategy even with high dimensional problems. The effectiveness of the proposed approach was evaluated using a compact catalog of Generalized Beta density functions and well-known analytical optimization test functions, i.e., F2, Hartmann 6D, and Griewangk 10D and in the optimization of a field scale alkali-surfactant-polymer enhanced oil recovery process. The results revealed that: (a) the density function (from a catalog) with the best match to a function outputs distribution, was the same for both large and reduced samples, (b) the true optimum value was always within a 95% confidence interval of the estimated minimum distribution, and (c) the estimated minimum represents a significant improvement over the present best solution and an excellent approximation of the true optimum value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Queipo N., Pintos S., Verde A., Haftka R.: Assessing the value of another cycle in Gaussian process surrogate-based optimization. Struct. Multidiscip. Optim. 39(5), 459–475 (2009). doi:10.1007/s00158-008-0346-0

    Article  Google Scholar 

  2. Giunta A.A., Balabanov V., Haim D., Grossman B., Mason W.H., Watson L.T., Haftka R.T.: Multidisciplinary optimization of a supersonic transport using design of experiments, theory and responsive surface modeling. Aeronaut. J. 101, 347–356 (1997)

    Google Scholar 

  3. Balabanov, V., Haftka, R., Grossman, B., Mason, W., Watson, L.: Multidisciplinary response model for HSCT wing bending material weight. In: Proc 7th AIAA/USAF/NASA/ISSMO Symp Multidiscip Anal Optim, AIAA paper 98-4804, St. Louis, MO, pp. 778–788 (1998)

  4. Li, W., Padula, S.: Approximation methods for conceptual design of complex systems. In: Chui, C., Neamtu, M., Schumaker, L. (eds.) 11th Int Conf Approx Theory. Gatlinburg, TN, May (2004)

  5. Queipo N., Haftka R., Shyy W., Goel T., Vaidyanathan R., Tucker P.K.: Surrogate-based analysis and optimization. J. Prog. Aerosp. Sci. 41, 1–28 (2005)

    Article  Google Scholar 

  6. Craig, K., Stander, N., Dooge, A., Varadappa, S.: MDO of automotive vehicles for crashworthiness using response surface methods. In: 9th AIAA/ISSMO Symp Multidiscip Anal Optim, AIAA paper 2002-5607, Atlanta, 4–6 September (2002)

  7. Kurtaran H., Eskamdarian A., Marzougui D., Bedewi N.: Crashworthiness design optimization using successive response surface approximations. Comput. Mech. 29, 409–421 (2002)

    Article  Google Scholar 

  8. Queipo N., Goicochea J., Pintos S.: Surrogate modeling-based optimization of SAGD processes. J. Pet. Sci. Eng. 35(1–2), 83–93 (2002)

    Article  Google Scholar 

  9. Queipo N., Verde A., Canelon J., Pintos S.: Efficient global optimization of hydraulic fractuing designs. J. Pet. Sci. Eng. 35(3–4), 151–166 (2002)

    Article  Google Scholar 

  10. Wang G., Shan S.: Review of metamodeling techniques in support of engineering design optimization. ASME Trans. J. Mech. Des. 129(4), 370 (2007)

    Article  Google Scholar 

  11. Forrester A., Keane A.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45(1–9), 50–79 (2009)

    Article  Google Scholar 

  12. Jones D.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21, 345–383 (2001)

    Article  Google Scholar 

  13. Gutmann H.: A radial basis function method for global optimization. J. Glob. Optim. 19, 201–227 (2001)

    Article  Google Scholar 

  14. Jones D., Schonlau M., Welch W.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13, 455–492 (1998)

    Article  Google Scholar 

  15. Sasena M., Papalambros P., Goovaerts P.: Exploration of metamodeling sampling criteria for constrained global optimization. Eng. Optim. 34(3), 263–278 (2002)

    Article  Google Scholar 

  16. Sobester A., Leary S., Keane A.: On the design of optimization strategies based on global response surface approximation models. J. Glob. Optim. 33, 31–59 (2005)

    Article  Google Scholar 

  17. Huang D., Allen T., Notz W., Zeng N.: Global optimization of stochastic black-box systems via sequential kriging meta-models. J. Glob. Optim. 34, 441–466 (2006)

    Article  Google Scholar 

  18. Apley D., Liu J., Chen W.: Understanding the effects of model uncertainty in robust design with computer experiments. J. Mech. Des. 128(4), 945–958 (2006)

    Article  Google Scholar 

  19. Forrester, A., Jones, D.: Global optimization of deceptive functions with spare sampling. In: Proc 12th AIAA/ISSMO Multidiscip Anal Optim Conf, BC, Canada, 10–12 September (2008)

  20. Ponweiser, W., Wagner, T., Vincze, M.: Clustered multiple generalized expected improvement: a novel infill sampling criterion for surrogate models. In: Michalewicz, Z. (ed.) IEEE Congr on Evol Comp, pp. 3514–3521. IEEE Computer Society. (2008)

  21. Ginsbourger, D., Le Riche, R., Carraro, L.: Multi-points criterion for deterministic parallel global optimization based on Kriging. In: Intl Conf Nonconvex Progr, Rouen, France (2007)

  22. Gumbel E.J.: Statistics of Extremes, pp. 375. Columbia University Press, New York (1958)

    Google Scholar 

  23. Finkenstadt, B., Rootzéen, H. (eds): Extreme Values in Finance, Telecommunications and the Environment. Chapman and Hall/CRC Press, London (2003)

    Google Scholar 

  24. Coles S.G.: An Introduction to Statistical Modeling of Extreme Values. Springer, New York (2001)

    Google Scholar 

  25. Johnson M., Moore L., Ylvisaker D.: Minimax and maximin distance designs. J. Stat. Plan. Inference 26, 131–148 (1990)

    Article  Google Scholar 

  26. Iman R., Conover W.: A distribution-free approach to inducing rank correlation among input variables. Commun. Stat. Part B Simulat. Comput. 11, 311–334 (1982)

    Article  Google Scholar 

  27. Owen A.B.: Controlling correlations in latin hypercube samples. J. Stat. Assoc. 89, 1517–1522 (1994)

    Article  Google Scholar 

  28. McKay M., Conover W., Beckman R.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

    Google Scholar 

  29. Tang B.: Orthogonal array-based latin hypercubes. J. Am. Stat. Assoc. 88, 1392–1397 (1993)

    Article  Google Scholar 

  30. Ye K.: Orthogonal column latin hypercubes and their application in computer experiments. J. Am. Stat. Assoc. 93, 1430–1439 (1998)

    Article  Google Scholar 

  31. Palmer K., Tsui K.: A minimum bias latin hypercube design. IIE Trans. 33, 793–808 (2001)

    Google Scholar 

  32. Leary S., Bhaskar A., Keane A.: Optimal orthogonal array-based latin hypercubes. J. Appl. Statist. 30, 585–598 (2003)

    Article  Google Scholar 

  33. Cramer H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1999)

    Google Scholar 

  34. Jin R., Chen W., Simpson T.: Comparative studies of metamodeling techniques under multiple modeling criteria. Struct. Multidisc. Optim. 23, 1–13 (2000)

    Article  Google Scholar 

  35. Dixon L., Szegö G.: The global optimization problem: an introduction. In: Dixon, L., Szegö, G. (eds) Towards Global Optimization, 2, North-Holland, Amsterdam (1978)

    Google Scholar 

  36. Digalakis J., Margaritis G.: On benchmarking functions for genetic algorithms. Int. J. Comp. Math. 77(4), 481–506 (2001)

    Article  Google Scholar 

  37. Zerpa L., Queipo N., Pintos S., Salager S.: An optimization methodology for alkaline-surfactant-polymer flooding processes using field scale numerical simulations and multiple surrogates. J. Pet. Sci. Eng. 47(3–4), 197–208 (2005)

    Article  Google Scholar 

  38. Carrero E., Zerpa L., Queipo N., Pintos S.: Global sensitivity analysis of alkali-surfactant-polymer enhanced oil recovery processes. J. Pet. Sci. Eng. 50(1–2), 30–42 (2007)

    Article  Google Scholar 

  39. Sanchez E., Queipo N., Pintos S.: Toward an optimal ensemble of kernel-based approximations with engineering applications. Struct. Multidiscip. Optim. 36(3), 247–267 (2008)

    Article  Google Scholar 

  40. Nava E., Pintos S., Queipo N.: A geostatistical perspective for the surrogate-based integration of variable fidelity models. J. Pet. Sci. Eng. 51, 56–66 (2010)

    Article  Google Scholar 

  41. UTCHEM: Utchem-9.0 a three-dimensional chemical flood simulator (2000). http://www.cpge.utexas.edu/utchem/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nestor V. Queipo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Queipo, N.V., Pintos, S. & Nava, E. Setting targets for surrogate-based optimization. J Glob Optim 55, 857–875 (2013). https://doi.org/10.1007/s10898-011-9837-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9837-4

Keywords

Navigation