Skip to main content
Log in

Minimum recession-compatible subsets of closed convex sets

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A subset B of a closed convex set A is recession-compatible with respect to A if A can be expressed as the Minkowski sum of B and the recession cone of A. We show that if A contains no line, then there exists a recession-compatible subset of A that is minimal with respect to set inclusion. The proof only uses basic facts of convex analysis and does not depend on Zorn’s Lemma. An application of this result to the error bound theory in optimization is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Addi K., Adly S., Goeleven D., Saoud H.: A sensitivity analysis of a class of semi-coercive variational inequalities using recession tools. J. Global Optim. 40, 7–27 (2008)

    Article  Google Scholar 

  2. Auslender A., Teboulle M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer Monographs in Mathematics. Springer, New York (2003)

    Google Scholar 

  3. Belousov E.G., Klatte D.: A Frank–Wolfe type theorem for convex polynomial programs. Comput. Optim. Appl. 22, 37–48 (2002)

    Article  Google Scholar 

  4. Burke J.V., Deng S.: Weak sharp minima revisited, Part I: basic theory. Control Cyber. 31, 439–470 (2002)

    Google Scholar 

  5. Deng S.: Computable error bounds for convex inequality systems in reflexive Banach spaces. SIAM J. Optim. 7, 274–279 (1997)

    Article  Google Scholar 

  6. Deng S.: Perturbation analysis of a condition number for convex inequality systems and global error bounds for analytic systems. Math. Program. 83, 263–276 (1998)

    Article  Google Scholar 

  7. Deng S., Hu H.: Computable error bounds for semidefinite programming. J. Global Optim. 14, 105–115 (1999)

    Article  Google Scholar 

  8. Holmes R.B.: Geometric Functional Analysis and its Applications. Springer, New York (1975)

    Google Scholar 

  9. Klatte D., Li W.: Asymptotic constraint qualifications and global error bounds for convex inequalities. Math. Program. 84, 137–160 (1999)

    Google Scholar 

  10. Li G.: On the asymptotic well behaved functions and global error bound for convex polynomials. SIAM J. Optim. 20, 1923–1943 (2010)

    Article  Google Scholar 

  11. Li G., Ng K.F.: Error bounds of generalized D-gap functions for nonsmooth and nonmonotone variational inequality problems. SIAM J. Optim. 20, 667–690 (2009)

    Article  Google Scholar 

  12. Li W.: Abadie’s constraint qualification, metric regularity, and error bounds for differentiable convex inequalities. SIAM J. Optim. 7, 966–978 (1997)

    Article  Google Scholar 

  13. Li W., Singer I.: Global error bounds for convex multifunctions and applications. Math. Oper. Res. 23, 443–462 (1998)

    Article  Google Scholar 

  14. Luc D.T.: Theory of vector optimization, Lecture Notes in Economics and Mathematical Systems, vol.319. Springer, Berlin (1989)

    Google Scholar 

  15. Ng K.F., Zheng X.Y.: Characterizations of error bounds for convex multifunctions on Banach spaces. Math. Oper. Res. 29, 45–63 (2004)

    Article  Google Scholar 

  16. Pang J.-S.: Error bounds in mathematical programming. Math. Program. 79, 299–332 (1997)

    Google Scholar 

  17. Pardalos, P.M., Rassias, T.M., Khan, A.A. (eds): Nonlinear Analysis and Variational Problems. Springer, Berlin (2010)

    Google Scholar 

  18. Robinson S.M.: Regularity and stability for convex multivalued functions. Math. Oper. Res. 1, 130–143 (1976)

    Article  Google Scholar 

  19. Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Google Scholar 

  20. Stoer J., Witzgall C.: Convexity and Optimization in Finite Dimensions. Springer, New York (1970)

    Google Scholar 

  21. Yang W.H.: Error bounds for convex polynomials. SIAM J. Optim. 19, 1633–1647 (2008)

    Article  Google Scholar 

  22. Zheng X.Y., Ng K.F.: Metric subregularity and constraint qualifications for convex generalized equations in Banach spaces. SIAM J. Optim. 18, 437–460 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Sun.

Additional information

This research is partially supported by National Natural Science Foundation of China under Grant-10701059, and the PROVOST’S CHAIR Grant and the STAR Grant from School of Business, National University of Singapore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Sun, J. Minimum recession-compatible subsets of closed convex sets. J Glob Optim 52, 253–263 (2012). https://doi.org/10.1007/s10898-011-9662-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9662-9

Keywords

Navigation