Skip to main content
Log in

Nonlinear optimal feedback control for lunar module soft landing

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, the task of achieving the soft landing of a lunar module such that the fuel consumption and the flight time are minimized is formulated as an optimal control problem. The motion of the lunar module is described in a three dimensional coordinate system. We obtain the form of the optimal closed loop control law, where a feedback gain matrix is involved. It is then shown that this feedback gain matrix satisfies a Riccati-like matrix differential equation. The optimal control problem is first solved as an open loop optimal control problem by using a time scaling transform and the control parameterization method. Then, by virtue of the relationship between the optimal open loop control and the optimal closed loop control along the optimal trajectory, we present a practical method to calculate an approximate optimal feedback gain matrix, without having to solve an optimal control problem involving the complex Riccati-like matrix differential equation coupled with the original system dynamics. Simulation results show that the proposed approach is highly effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Calvin J.M.: Adaptive Global Search Encyclopedia of Optimization, 2nd edn, pp. 19–21. Springer, Berlin (2009)

    Book  Google Scholar 

  2. Christopher, N.D.: A optimal guidance law for planetary landing. AIAA Guidance, Navigation, and Control Conference, New Orleans LA, Aug., pp. 11–13 (1997)

  3. Fasca N.P., Kouramas K.I., Saraiva P.M., Rustem B., Pistikopoulos E.N.: A multi-parametric programming approach for constrained dynamic programming problems. Optim. Lett. 2, 267–280 (2008)

    Article  Google Scholar 

  4. Hebertt, S.R.: Soft landing on a planet: a trajectory planning approach for the liouvillian model. In: Proceeding of American Control Conference, San Diego California, pp. 2936–2940 (1999)

  5. Hirsch M.J., Commander C., Pardalos P.M., Murphy R.: Optimization and Cooperative Control Strategies, pp. 31–46. Springer, Berlin (2008)

    Google Scholar 

  6. Huang, X.Y., Wang, D.Y.: Autonomous navigation and guidance for pinpoint lunar soft landing. In: Proceedings of IEEE International Conference on Robotics and Biomimetics, Sanya China, pp. 1148–1153 (2007)

  7. Jennings, L.S., Fisher, M.E., Teo, K.L., Goh, C.J.: MISER3.3 Optimal Control Software Version 3.3: Theory and User Manual. Centre for Applied Dynamics and Optimization, The University of Western Australia. (http://www.cado.uwa.edu.au/miser/manual.html) (2004)

  8. John B.T.: Practical Methods for Optimal Control Using Nonlinear Programming. SIAM, Philadelphia (2001)

    Google Scholar 

  9. Lee H.W.J., Teo K.L., Yan W.Y.: Nonlinear optimal feedback control law for a class of nonlinear systems. Neural Parallel Sci. Comput. 4, 157–178 (1996)

    Google Scholar 

  10. Liu P.: A new nonlinear optimal feedback control law. Control Theory Adv. Technol. 19, 947–954 (1993)

    Google Scholar 

  11. Liu X.L., Duan G.R., Teo K.L.: Optimal soft landing control for moon lander. Automatica 44, 1097–1103 (2008)

    Article  Google Scholar 

  12. Luenberger D.G.: The gradient projection method along geodesics. Manag. Sci. 18, 620–631 (1972)

    Article  Google Scholar 

  13. Ma K.M., Chen L.J., Wang Z.C.: Practical design of control law for flight vehicle soft landing. Missil. Space Veh. 2, 39–43 (2001)

    Google Scholar 

  14. Pardalos P.M., Yatsenko V.: Optimization and Control of Bilinear Systems, pp. 66–73. Springer, Berlin (2009)

    Google Scholar 

  15. Richardson S., Wang S., Jennings L.S.: A multivariate adaptive regression B-spline algorithm (BMARS) for solving a class of nonlinear optimal feedback control problems. Automatica 44, 1149–1155 (2008)

    Article  Google Scholar 

  16. Ruan X.G.: A nonlinear neurocontrol scheme for lunar soft landing. J. Astron. 19, 35–43 (1998)

    Google Scholar 

  17. Teo K.L., Goh C.J., Wong K.H.: A Unified Computational Approach to Optimal Control Problems, pp. 99–161. Wiley, New York (1991)

    Google Scholar 

  18. Teo K.L., Jennings L.S., Lee H.W.J., Rehbock V.: The control parameterization enhancing transform for constraint optimal control problems. J. Austral. Math. Soc. Ser. B 40, 314–335 (1999)

    Article  Google Scholar 

  19. Wang D.Y., Li T.S., Ma X.R.: Numerical solution of TPBVP in optimal lunar soft landing. Aerosp. Control 3, 44–49 (2000)

    Google Scholar 

  20. Wang D.Y., Li T.S., Yan H., Ma X.R.: A suboptimal fuel guidance law for lunar soft landing. J. Astron. 21, 55–63 (2000)

    Google Scholar 

  21. Wang Z., Li J.F., Cui N.G., Liu T.: Genetic algorithm optimization of lunar probe soft landing trajectories. J. Tsinghua Univ. Sci.Technol. 43, 1056–1059 (2003)

    Google Scholar 

  22. Xi X.N., Zeng G.Q., Ren X., Zhao H.Y.: Orbit Design of Lunar Probe, pp. 143–165. National Defence Industry Press, Changsha (2001)

    Google Scholar 

  23. Xu M., Li J.F.: Optimal control of lunar soft landing. J. Tsinghua Univ. Sci.Technol. 41, 87–89 (2001)

    Google Scholar 

  24. Zhou J.Y., Zhou D.: Precise modeling and optimal orbit design of lunar modules soft landing. J. Astron. 28, 1462–1466 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyang Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Teo, K.L., Zhou, D. et al. Nonlinear optimal feedback control for lunar module soft landing. J Glob Optim 52, 211–227 (2012). https://doi.org/10.1007/s10898-011-9659-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9659-4

Keywords

Navigation