Skip to main content

Advertisement

Log in

The interacting-particle algorithm with dynamic heating and cooling

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We consider an interacting-particle algorithm which is population-based like genetic algorithms and also has a temperature parameter analogous to simulated annealing. The temperature parameter of the interacting-particle algorithm has to cool down to zero in order to achieve convergence towards global optima. The way this temperature parameter is tuned affects the performance of the search process and we implement a meta-control methodology that adapts the temperature to the observed state of the samplings. The main idea is to solve an optimal control problem where the heating/cooling rate of the temperature parameter is the control variable. The criterion of the optimal control problem consists of user defined performance measures for the probability density function of the particles’ locations including expected objective function value of the particles and the spread of the particles’ locations. Our numerical results indicate that with this control methodology the temperature fluctuates (both heating and cooling) during the progress of the algorithm to meet our performance measures. In addition our numerical comparison of the meta-control methodology with classical cooling schedules demonstrate the benefits in employing the meta-control methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali M.M., Khompatraporn C. and Zabinsky Z.B. (2005). A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Glob. Optim. 31(4): 631–672

    Article  Google Scholar 

  • (2000). Nonlinear model predictive control. Progress in Systems and Control Theory, vol. 26. Birkhäuser Verlag, Basel

    Google Scholar 

  • Azizi N. and Zolfaghari S. (2004). Adaptive temperature control for simulated annealing: a comparative study. Comput. Oper. Res. 31: 2439–2451

    Article  Google Scholar 

  • Bertsekas D.P. (1995). Dynamic Programming and Optimal Control, vol. 1. Athena Scientific, Belmont

    Google Scholar 

  • Cerf R. (1996). A new genetic algorithm. Ann. Appl. Probab. 6(3): 778–817

    Article  Google Scholar 

  • Dunkl C.F. and Xu Y. (2001). Orthogonal Polynomials of Several Variables. Cambridge University Press, Cambridge

    Google Scholar 

  • Ingber L. (1996). Adaptive simulated annealing (asa): lessons learned. Control Cybern. 25: 22–54

    Google Scholar 

  • Kirkpatrick S., Gelatt C.D.J. and Vecchi M.P. (1983). Optimisation by simulated annealing. Science 220: 671–680

    Article  Google Scholar 

  • Kohn W., Zabinsky Z.B. and Brayman V. (2006). Optimization of algorithmic parameters using a meta-control approach. J. Glob. Optim. 34(2): 293–316

    Article  Google Scholar 

  • Kolonko M. and Tran M.T. (1997). Convergence of simulated annealing with feedback temperature schedules. Probab. Eng. Inform. Sci. 11: 279–304

    Article  Google Scholar 

  • Lovász L. (1999). Hit-and-run mixes fast. Math. Program. 86: 443–461

    Article  Google Scholar 

  • Mitter S.K. (1966). Successive approximation methods for the solution of optimal control problems. Automatica 3: 135–149

    Article  Google Scholar 

  • Molvalioglu, O., Zabinsky, Z.B., Kohn, W.: Multi-particle simulated annealing. In: Törn, A., Zilinskas, J.(eds.) Models and Algorithms for Global Optimization. ptimization and its applications, vol. 4. Springer (2006)

  • Molvalioglu, O., Zabinsky, Z.B., Kohn, W.: Meta-control of an Interacting-particle Algorithm for Global Optimization. Technical report, University of Washington (2007)

  • Moral P.D. (2004). Feynman-Kac Formulae: Genological and Interacting Particle Systems with Applications. Springer-Verlag, New York

    Google Scholar 

  • Moral P.D. and Miclo L. (2006). Dynamiques recuites de type Feynman-Kac: résultats précis et conjectures (French). ESAIM: Probab. Stat. 10: 76–140

    Article  Google Scholar 

  • Munakata T. and Nakamura Y. (2001). Temperature control for simulated annealing. Phys. Rev. E 64(4): 46–127

    Article  Google Scholar 

  • Scott D. (1992). Multivariate Density Estimation: Theory, Practice and Visualization. Wiley, New York

    Google Scholar 

  • Sharpe F.W. (1994). The sharpe ratio. J. Portfolio Manage. 21: 49–59

    Article  Google Scholar 

  • Shen Y., Kiatsupaibul S., Zabinsky Z.B. and Smith R.L. (2007). An analytically derived cooling schedule for simulated annealing. J. Glob. Optim. 38: 333–365

    Article  Google Scholar 

  • Smith R.L. (1984). Efficient Monte Carlo procedures for generating points uniformly distributed over bounded region. Oper. Res. 32: 1296–1308

    Article  Google Scholar 

  • Srinivas M. and Patnaik L.M. (1994). Genetic algorithms: a survey. IEEE Comp. 27(6): 17–26

    Google Scholar 

  • Triki E., Collette Y. and Siarry P. (2005). A theoretical study on the behavior of simulated annealing leading to a new cooling schedule. Eur. J. Oper. Res. 166(1): 77–92

    Article  Google Scholar 

  • Zabinsky Z.B. (2003). Stochastic Adaptive Search for Global Optimization. Kluwer Academic Publishers, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zelda B. Zabinsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molvalioglu, O., Zabinsky, Z.B. & Kohn, W. The interacting-particle algorithm with dynamic heating and cooling. J Glob Optim 43, 329–356 (2009). https://doi.org/10.1007/s10898-008-9292-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-008-9292-z

Keywords

Navigation