Skip to main content
Log in

Copper-doped Lanthanide Coordination Polymers as Luminescent Nanoenzyme for Ratiometric Sensing of H2O2 and Glutathione

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Design and fabrication of integrated multifunctional probes with intrinsic catalytic and detection abilities is of great importance to simplify the operation in biosensing application with high sensitivity. Herein, dual-emitting lanthanide coordination polymers (Ln-CPs) were facilely prepared by self-assembly of guanine diphosphate (GDP), terephthalic acid (TA), Tb3+ and Cu2+ designated as Tb/Cu-GDP/TA CPs. The doped Cu2+ endowed CPs with obviously enhanced peroxidase mimicking activity compared with free Cu2+. In the presence of H2O2, the probe catalyzed the oxidation of TA generating a new blue fluorescent product, while the fluorescence of Tb3+ decreased simultaneously. Therefore, a new sensitive ratiometric fluorescent sensor for H2O2 has been developed with a good linear range from 0.01 to 300 μM and limit of 1.62 nM. Moreover, the proposed platform could be extended to GSH ratiometric assay in the presence of H2O2, and interestingly, the detection performance could be easily adjusted by adding different concentration of H2O2. This work will facilitate the development of luminescent nanoenzymes based on Ln-CPs to construct the simple ratiomatric sensing platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data is provided within the manuscript or supplementary information files.

References

  1. Sun HJ, Zhou Y, Ren JS, Qu XG (2018) Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications. Angew. Chem. Int Ed 57:9224–9237. https://doi.org/10.1002/anie.201712469

    Article  CAS  Google Scholar 

  2. Cao CY, Zou H, Yang N, Li H, Cai Y, Song XJ, Shao JJ, Chen P, Mou XZ, Wang WJ, Dong XC (2021) Fe3O4/Ag/Bi2MoO6 Photoactivatable nanozyme for self-replenishing and sustainable cascaded nanocatalytic cancer therapy. Adv Mater 33:2106996. https://doi.org/10.1002/adma.202106996

    Article  CAS  Google Scholar 

  3. Yang W, Weng CY, Li XY, He HL, Fei JW, Xu W, Yan XQ, Zhu WY, Zhang HS, Zhou XM (2021) A sensitive colorimetric sensor based on one-pot preparation of h-Fe3O4 ppy with high peroxidase-like activity for determination of glutathione and H2O2. Sens Actuators B 338:129844. https://doi.org/10.1016/j.snb.2021.129844

    Article  CAS  Google Scholar 

  4. Liang H, Lin FF, Zhang ZJ, Liu BW, Jiang SH, Yuan QP, Liu JW (2017) Multicopper laccase mimicking nanozymes with nucleotides as ligands. ACS Appl Mater Interfaces 9:1352–1360. https://doi.org/10.1021/acsami.6b15124

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Y, Jiang YC, Wei B, Su MM, Liang H (2022) Cu/nucleotide coordination self-assembling to in situ regenerate NAD(P)+ and co-immobilize dehydrogenase with robust activity and stability. Biochem Eng J 184:108467. https://doi.org/10.1016/j.bej.2022.108467

    Article  CAS  Google Scholar 

  6. Jin ZY, Xu GF, Niu YS, Ding XT, Han YQ, Kong WH, Fang YF, Niu HT, Xu YH (2020) Ti3C2Tx MXene-derived TiO2/C-QDs as oxidase mimics for the efficient diagnosis of glutathione in human serum. J Mater Chem B 8:3513–3518. https://doi.org/10.1039/c9tb02478f

    Article  CAS  PubMed  Google Scholar 

  7. He L, Ji Q, Chi B, You SS, Lu S, Yang TT, Xu ZS, Wang YX, Li L, Wang J (2023) Construction nanoenzymes with elaborately regulated multi-enzymatic activities for photothermal-enhanced catalytic therapy of tumor. Colloids Surf 222:113058. https://doi.org/10.1016/j.colsurfb.2022.113058

    Article  CAS  Google Scholar 

  8. Zhao JH, Bao XF, Meng T, Wang S, Lu SS, Liu GY, Wang JG, Sun J, Yang XR (2021) Fe(II)-driven self-assembly of enzyme-like coordination polymer nanoparticles for cascade catalysis and wound disinfection applications. Chem Eng 420:129674. https://doi.org/10.1016/j.cej.2021.129674

    Article  CAS  Google Scholar 

  9. Peng D, Liang RP, Qiu JD, Liu JW (2019) Robust colorimetric detection of Cu2+ by excessed nucleotide coordinated nanozymes. J Anal Test 3:260–268. https://doi.org/10.1007/s41664-019-00106-y

    Article  Google Scholar 

  10. Zhang SQ, Lin FF, Yuan QP, Liu JW, Li Y, Liang H (2020) Robust magnetic laccase-mimicking nanozyme for oxidizing o-phenylenediamine and removing phenolic pollutants. J Environ Sci 88:103–111. https://doi.org/10.1016/j.jes.2019.07.008

    Article  CAS  Google Scholar 

  11. Memon AH, Ding RS, Yuan QP, Liang H, Wei Y (2018) Coordination of GMP ligand with Cu to enhance the multiple enzymes stability and substrate specificity by co-immobilization process. Biochem Eng J 136:102–108. https://doi.org/10.1016/j.bej.2018.04.009

    Article  CAS  Google Scholar 

  12. Xu JZ, Xu Y, Sun LX, Lu B, Yan X, Wang ZH, Zhang T (2021) Glucose oxidase loaded Cu2+ based metal-organic framework for glutathione depletion/reactive oxygen species elevation enhanced chemotherapy. Biomed Pharmacother 141:111606. https://doi.org/10.1016/j.biopha.2021.111606

    Article  CAS  PubMed  Google Scholar 

  13. Zeng WW, Yu M, Chen T, Liu YQ, Yi YF, Huang CY, Tang J, Li HY, Ou MT, Wang TQ, Wu MY, Mei L (2022) Polypyrrole nanoenzymes as tumor microenvironment modulators to reprogram macrophage and potentiate immunotherapy. Adv Sci 9:2201703. https://doi.org/10.1002/advs.202201703

    Article  CAS  Google Scholar 

  14. Wang SL, Zhao JJ, Zhang LL, Zhang CB, Qiu ZD, Zhao SL, Huang Y, Liang H (2022) A unique multifunctional nanoenzyme tailored for triggering tumor microenvironment activated NIR-II photoacoustic imaging and chemodynamic/photothermal combined therapy. Adv Healthc Mater 11:2102073. https://doi.org/10.1002/adhm.202102073

    Article  CAS  Google Scholar 

  15. Zhang LL, Wang J, Zhao CL, Zhou FJ, Yao C, Song C (2022) Ultra-fast colorimetric detection of glutathione by magnetic Fe NPs with peroxidase-like activity. Sens Actuators B 361:131750. https://doi.org/10.1016/j.snb.2022.131750

    Article  CAS  Google Scholar 

  16. Shafa M, Ahmad I, Hussain S, Asif M, Pan Y, Zairov R, Alothman AA, Ouladsmane M, Ullah Z, Ullah N, Lai C, Jabeen U (2023) Ag-Cu nanoalloys: an electrochemical sensor for H2O2 detection. Surf Interfaces 36:102616. https://doi.org/10.1016/j.surfin.2022.102616

    Article  CAS  Google Scholar 

  17. Farooq M, Hayat A, Nawaz MH, Hassan MS, Nasir M, Ajab H (2023) Tuning the structure and properties of MoS2-SrTiO3 nanocomposite and its enzyme mimic behavior for enhanced optical sensing and measurement of H2O2 in biological samples. Measurement 216:112901. https://doi.org/10.1016/j.measurement.2023.112901

    Article  Google Scholar 

  18. Aoyama K (2021) Glutathione in the brain. Int J Mol Sci 22:5010. https://doi.org/10.3390/ijms22095010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu XX, Xue Y, Han S, Chen W, Fu M, Gao Y, Nie SM, Liu QY, Zhang XX, Zhang X (2020) V2O5-montmorillonite nanocomposites of peroxidase-like activity and their application in the detection of H2O2 and glutathione. Appl Clay Sci 195:105718. https://doi.org/10.1016/j.clay.2020.105718

    Article  CAS  Google Scholar 

  20. Liu X, Wang Q, Zhang Y, Zhang LC, Su YY, Lv Y (2013) Colorimetric detection of glutathione in human blood serum based on the reduction of oxidized TMB. New J Chem 37:2174–2178. https://doi.org/10.1039/c3nj40897c

    Article  CAS  Google Scholar 

  21. Domergue L, Cimetière N, Giraudet S, Hauchard D (2023) Determination of hydrogen peroxide by differential pulse polarography in advanced oxidation processes for water treatment. J Water Process Eng 53:103707. https://doi.org/10.1016/j.jwpe.2023.103707

    Article  Google Scholar 

  22. Wang W, Chen JD, Zhou ZZ, Zhan SS, Xing ZY, Liu HY, Zhang LN (2022) Ultrasensitive and selective detection of glutathione by ammonium carbamate-gold platinum nanoparticles-based electrochemical sensor. Life 12:1142. https://doi.org/10.3390/life12081142

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li HK, Cai QQ, Wang JR, Jie GF (2023) Versatile FeMoOv nanozyme bipolar electrode electrochemiluminescence biosensing and imaging platform for detection of H2O2 and PSA. Biosens Bioelectron 232:115315. https://doi.org/10.1016/j.bios.2023.115315

    Article  CAS  PubMed  Google Scholar 

  24. Gao WY, Liu ZY, Qi LM, Lai JP, Kitte SA, Xu GB (2016) Ultrasensitive glutathione detection based on lucigenin cathodic electrochemiluminescence in the presence of MnO2 nanosheets. Anal Chem 88:7654–7659. https://doi.org/10.1021/acs.analchem.6b01491

    Article  CAS  PubMed  Google Scholar 

  25. Aa O, George S (2023) Picric acid incorporated fluorescent nitrogen doped carbon dot for “turn-on” detection of glutathione. J Fluoresc. https://doi.org/10.1007/s10895-023-03541-4

    Article  Google Scholar 

  26. Hu YY, Wang YP, Guan RT, Zhang C, Shao XD, Yue QL (2021) Construction of a ratio fluorescence assay of 5-aminosalicylic acid based on its aggregation induced emission with blue emitting N/P-codoped carbon dots. RSC Adv 11:6607–6613. https://doi.org/10.1039/d0ra10258j

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chu HT, Yao D, Chen JQ, Yu M, Su LQ (2021) Detection of Hg2+ by a dual-fluorescence ratio probe constructed with rare-earth-element-doped cadmium telluride quantum dots and fluorescent carbon dots. ACS Omega 6:10735–10744. https://doi.org/10.1021/acsomega.1c00263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Han XY, Fan QX, Chen ZH, Deng LX, Fang ZQ, Shi GY, Zhang M (2019) Coordination polymers of Tb3+/Nucleotide as smart chemical nose/tongue toward pattern-recognition-based and time-resolved fluorescence sensing. Biosens Bioelectron 139:111335. https://doi.org/10.1016/j.bios.2019.111335

    Article  CAS  PubMed  Google Scholar 

  29. Zeng HH, Qiu WB, Zhang L, Liang RP, Qiu JD (2016) Lanthanide coordination polymer nanoparticles as an excellent artificial peroxidase for hydrogen peroxide detection. Anal Chem 88:6342–6348. https://doi.org/10.1021/acs.analchem.6b00630

    Article  CAS  PubMed  Google Scholar 

  30. Lv PY, Cao Y, Liu Z, Wang R, Ye BX, Li GP (2020) Dual luminescent lanthanide coordination polymers for ratiometric sensing and efficient removal of Hg2+. Anal Chem 12:91–96. https://doi.org/10.1039/c9ay02199j

    Article  CAS  Google Scholar 

  31. Zhang YH, Li B, Ma HP, Zhang LM, Zheng YX (2016) Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework. Biosens Bioelectron 85:287–293. https://doi.org/10.1016/j.bios.2016.05.020

    Article  CAS  PubMed  Google Scholar 

  32. Liu PT, Hao R, Sun WL, Li JH (2023) Ratiometric detection of Cu2+ in water and drinks using Tb(III)-functionalized UiO-66-type metal-organic frameworks. Anal Methods 15:1953–1958. https://doi.org/10.1039/d3ay00044c

    Article  CAS  PubMed  Google Scholar 

  33. Gao J, Li Q, Wang CH, Tan HL (2017) Ratiometric detection of hydroxy radicals based on functionalized europium(III) coordination polymers. Mikrochim Acta 185:9. https://doi.org/10.1007/s00604-017-2581-9

    Article  CAS  PubMed  Google Scholar 

  34. Li ZJ, Liu G, Fan CB, Pu SZ (2021) Ratiometric fluorescence for sensitive detection of phosphate species based on mixed lanthanide metal organic framework. Anal Bioanal Chem 413:3281–3290. https://doi.org/10.1007/s00216-021-03264-0

    Article  CAS  PubMed  Google Scholar 

  35. Zhang WZ, Li SZ, Zhou A, Li MG (2023) Chemical cyclic amplification: hydroxylamine boosts the fenton reaction for versatile and scalable biosensing. Anal Chem 95:1764–1770. https://doi.org/10.1021/acs.analchem.2c05181

    Article  CAS  PubMed  Google Scholar 

  36. Zhou LY, Peng YB, Wang QQ, Lin QL (2017) An ESIPT-based two-photon fluorescent probe detection of hydrogen peroxide in live cells and tissues. J Photochem Photobiol B 167:264–268. https://doi.org/10.1016/j.jphotobiol.2017.01.011

    Article  CAS  PubMed  Google Scholar 

  37. Zeng HH, Yu K, Huang J, Liu F, Zhang ZY, Chen SP, Zhang F, Guan SP, Qiu L (2021) Ratiometric fluorescence detection of sulfide ions based on lanthanide coordination polymer using guanosine diphosphate as ligand. Colloids Surf B 204:111796. https://doi.org/10.1016/j.colsurfb.2021.111796

    Article  CAS  Google Scholar 

  38. Yang YY, Xu JY, Guo YZ, Wang X, Xiao LP, Zhou JH (2022) Biodegradation of lignin into low-molecular-weight oligomers by multicopper laccase-mimicking nanozymes of the Cu/GMP complex at room temperature. ACS Sustainable Chem Eng 10:5489–5499. https://doi.org/10.1021/acssuschemeng.1c08679

    Article  CAS  Google Scholar 

  39. Duan JZ, Ma BJ, Liu F, Zhang S, Wang SC, Kong Y, Du M, Han L, Wang JJ, Sang YH, Liu H (2018) Coordination ability determined transition metal ions substitution of Tb in Tb-Asp fluorescent nanocrystals and a facile ions-detection approach. Nanoscale 10:7526–7535. https://doi.org/10.1039/c7nr09267a

    Article  CAS  PubMed  Google Scholar 

  40. Xue SF, Lu LF, Wang QX, Zhang SQ, Zhang M, Shi GY (2016) An integrated logic system for time-resolved fluorescent “turn-on” detection of cysteine and histidine base on terbium (III) coordination polymer-copper (II) ensemble. Talanta 158:208–213. https://doi.org/10.1016/j.talanta.2016.05.066

    Article  CAS  PubMed  Google Scholar 

  41. Xiao JY, Hai L, Yang K, Luo YZ, Wang ZF, Li JQ, Ou CL, Wang L, Deng L, He DG (2023) Self-enhanced ROS generation by responsive co-delivery of H2O2 and O2 based on a versatile composite biomaterial for hypoxia-irrelevant multimodal antibiofilm therapy. Chem Eng J 465:142958. https://doi.org/10.1016/j.cej.2023.142958

    Article  CAS  Google Scholar 

  42. Zhang LJ, Hu X, Chen YS, Zhu JQ, Liu Q, Wan ZJ, Yang YY, Wang Q, Hu JQ, Zou RJ (2023) Multiple in-situ reactions induced by biodegradable iodides: a synergistically chemodynamic-photothermal therapy platform. Chem Eng J 465:142699. https://doi.org/10.1016/j.cej.2023.142699

    Article  CAS  Google Scholar 

  43. Zhu XY, Wu XR, Liu JJ, Zou LN, Ye BX, Li GP (2022) Lanthanide coordination polymers used for fluorescent ratiometric sensing of H2O2 and glucose. Inorg Chem Commun 144:109849. https://doi.org/10.1016/j.inoche.2022.109849

    Article  CAS  Google Scholar 

  44. Huang YK, Liu BX, Shen Q, Zhu X, Hao YQ, Chang Z, Xu FT, Qu P, Xu M (2017) Lanthanide coordination polymer probe for time-gated luminescence sensing of pH in undiluted human serum. Talanta 164:427–431. https://doi.org/10.1016/j.talanta.2016.07.028

    Article  CAS  PubMed  Google Scholar 

  45. He LY, Lu YX, Gao XY, Song PS, Huang ZX, Liu S, Liu YY (2018) Self-cascade system based on cupric oxide nanoparticles as dual-functional enzyme mimics for ultrasensitive detection of silver ions. ACS Sustainable Chem Eng 6:12132–12139. https://doi.org/10.1021/acssuschemeng.8b02476

    Article  CAS  Google Scholar 

  46. Wang K, Liu J, Wang X, Liu XY, Hu JS, Li ES, Zhao YS, Zhao RS, Yang SH (2022) Ratiometric fluorescent detection system based on dual-driving catalysis of CuO nanozyme with a classical univariate calibration for the determination of ascorbic acid in serum and fruits. Microchem J 172:10692. https://doi.org/10.1016/j.microc.2021.106921

    Article  CAS  Google Scholar 

  47. Cao Y, Liu JJ, Zou LN, Ye BX, Li GP (2021) Ratiometric fluorescence sensing of glutathione by using the oxidase-mimicking activity of MnO2 nanosheet. Anal Chim Acta 1145:46–51. https://doi.org/10.1016/j.aca.2020.12.019

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 22176179 and 42077389).

Author information

Authors and Affiliations

Authors

Contributions

Xinru Wu: Conceptualization, Methodology, Validation, Resources, Data curation, Writing – original draft, Writing – review & editing. Chen Ruan: Formal analysis, Investigation. Xinyue Zhu: Formal analysis, Methodology, Investigation. Lina Zou: Formal analysis, Methodology, Investigation. Rong Wang: Formal analysis, Methodology, Investigation. Gaiping Li: Data curation, Writing – review & editing, Project administration.

Corresponding author

Correspondence to Gaiping Li.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Cu(II)-doped Ln-CPs with fluorescent and catalytic functions were facilely synthesized through one-step self-assembly in aqueous solution.

• The Tb/Cu-GDP/TA CPs shew enhanced peroxidase-like activity and could directly ratiometric fluorescence sense of H2O2.

• With the help of H2O2, the Tb/Cu-GDP/TA CPs could be extended to GSH assay with adjustable LOD and linear range.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 605 mb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Ruan, C., Zhu, X. et al. Copper-doped Lanthanide Coordination Polymers as Luminescent Nanoenzyme for Ratiometric Sensing of H2O2 and Glutathione. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03659-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03659-z

Keywords

Navigation