Skip to main content
Log in

Pyrene, Anthracene, and Naphthalene-Based Azomethines for Fluorimetric Sensing of Nitroaromatic Compounds

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Special attention is given to the development of rapid and sensitive detection of nitroaromatic explosives for homeland security and environmental concerns. As part of our contribution to the detection of nitroaromatic explosives, fluorescent materials (A), (B) and (C) were synthesized from the reaction of 1,2-diaminocyclohexane with pyrene-1-carbaldehyde, anthracene-9-carbaldehyde and 2-hydroxy-1-naphthaldehyde, respectively. The structures of the prepared fluorescent azomethine probes were confirmed using FTIR, 1H-NMR and 13C-NMR spectroscopies. The basis of the study is the use of the synthesized materials as fluorescent probes in the photophysical and fluorescence detection of some nitroaromatic explosives. Emission increases occurred due to aggregation caused by π-π stacking in synthesized azomethines. To measure the nitroaromatic detection capabilities of fluorescence probes, fluorescence titration experiments were performed using the photoluminescence spectroscopy. It was observed that compound A containing pyrene ring provided the best emission intensity-increasing effect due to aggregation with the lowest LOD value (14.96 μM) for the sensing of 4-nitrophenol. In compounds B and C, nitrobenzene with the lowest LOD (16.15 μM and 23.49 μM respectively) caused the most regular emission increase, followed by picric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available in the supplementary material of this article.

References

  1. Kose M, Kırpık H, Kose A (2019) Fluorimetric detections of nitroaromatic explosives by polyaromatic imine conjugates. J Mol Struct 1185:369–378. https://doi.org/10.1016/j.molstruc.2019.03.003

    Article  CAS  Google Scholar 

  2. Esteve-Núñez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352. https://doi.org/10.1128/MMBR.65.3.335-352.2001

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ludwichk R, Helferich OK, Kist CP et al (2015) Characterization and photocatalytic treatability of red water from Brazilian TNT industry. J Hazard Mater 293:81–86. https://doi.org/10.1016/j.jhazmat.2015.03.017

    Article  CAS  PubMed  Google Scholar 

  4. Ahmed M, Hameed S, Ihsan A, Naseer MM (2017) Fluorescent thiazol-substituted pyrazoline nanoparticles for sensitive and highly selective sensing of explosive 2,4,6-trinitrophenol in aqueous medium. Sens Actuators, B Chem 248:57–62. https://doi.org/10.1016/j.snb.2017.03.125

    Article  CAS  Google Scholar 

  5. Xiao Y, De AC, Sze CC, Stuckey DC (2015) Toxicity measurement in biological wastewater treatment processes: A review. J Hazard Mater 286:15–29. https://doi.org/10.1016/j.jhazmat.2014.12.033

    Article  CAS  PubMed  Google Scholar 

  6. Fan YZ, Zhang Y, Li N et al (2017) A facile synthesis of water-soluble carbon dots as a label-free fluorescent probe for rapid, selective and sensitive detection of picric acid. Sens Actuators, B Chem 240:949–955. https://doi.org/10.1016/j.snb.2016.09.063

    Article  CAS  Google Scholar 

  7. Roy B, Bar AK, Gole B, Mukherjee PS (2013) Fluorescent tris-imidazolium sensors for picric acid explosive. J Org Chem 78:1306–1310. https://doi.org/10.1021/jo302585a

    Article  CAS  PubMed  Google Scholar 

  8. Ma Y, Huang S, Deng M, Wang L (2014) White upconversion luminescence nanocrystals for the simultaneous and selective detection of 2, 4, 6-trinitrotoluene and 2, 4, 6-trinitrophenol. ACS Appl Mater Interfaces 6(10):7790–7796. https://doi.org/10.1021/am501053n

  9. Paria S, Maity P, Siddiqui R et al (2022) Nanostructured luminescent micelles: Efficient “functional materials” for sensing nitroaromatic and nitramine explosives. Photochem 2:32–57. https://doi.org/10.3390/photochem2010004

    Article  CAS  Google Scholar 

  10. Fan Y, Chen Y, Bai Y et al (2022) A Novel 3D-morphology pyrene-derived conjugated fluorescence polymer for picric acid detection. Nanomaterials 12(22):4034. https://doi.org/10.3390/nano12224034

  11. Ouyang T, Guo X, Cui Q et al (2022) Conjugated polymer nanoparticles based on anthracene and tetraphenylethene for nitroaromatics detection in aqueous phase. Chemosensors 10(9):366. https://doi.org/10.3390/chemosensors10090366

  12. Elsner M, Jochmann MA, Hofstetter TB et al (2012) Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal Bioanal Chem 403:2471–2491. https://doi.org/10.1007/s00216-011-5683-y

    Article  CAS  PubMed  Google Scholar 

  13. Najarro M, Dávila Morris ME, Staymates ME et al (2012) Optimized thermal desorption for improved sensitivity in trace explosives detection by ion mobility spectrometry. Analyst 137:2614–2622. https://doi.org/10.1039/c2an16145a

    Article  CAS  PubMed  Google Scholar 

  14. Ma H, Li F, Li P et al (2016) A dendrimer-based electropolymerized microporous film: Multifunctional, reversible, and highly sensitive fluorescent probe. Adv Func Mater 26:2025–2031. https://doi.org/10.1002/adfm.201504692

    Article  CAS  Google Scholar 

  15. Gu C, Huang N, Wu Y et al (2015) Design of highly photofunctional porous polymer films with controlled thickness and prominent microporosity. Angew Chem Int Ed 54:11540–11544. https://doi.org/10.1002/anie.201504786

    Article  CAS  Google Scholar 

  16. Das G, Biswal BP, Kandambeth S et al (2015) Chemical sensing in two dimensional porous covalent organic nanosheets. Chem Sci 6:3931–3939. https://doi.org/10.1039/c5sc00512d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shaw PE, Chen SSY, Wang X et al (2013) High-generation dendrimers with excimer-like photoluminescence for the detection of explosives. J Phys Chem C 117:5328–5337. https://doi.org/10.1021/jp4002884

    Article  CAS  Google Scholar 

  18. Chen CH, Wang XS, Li L et al (2018) Highly selective sensing of Fe3+ by an anionic metal-organic framework containing uncoordinated nitrogen and carboxylate oxygen sites. Dalton Trans 47:3452–3458. https://doi.org/10.1039/c8dt00088c

    Article  CAS  PubMed  Google Scholar 

  19. Wei W, Zhang K, Wang XT, Du SW (2020) Construction of a highly stable lanthanide metal-organic framework for effective detection of aryl-organophosphorus flame retardants in simulated wastewater and fruit juices. Inorg Chim Acta 511:119840. https://doi.org/10.1016/j.ica.2020.119840

    Article  CAS  Google Scholar 

  20. Guo XY, Dong ZP, Zhao F et al (2019) Zinc(ii)-organic framework as a multi-responsive photoluminescence sensor for efficient and recyclable detection of pesticide 2,6-dichloro-4-nitroaniline, Fe(iii) and Cr(vi). New J Chem 43:2353–2361. https://doi.org/10.1039/c8nj05647a

    Article  CAS  Google Scholar 

  21. Arshad F, Sk MP (2020) Luminescent sulfur quantum dots for colorimetric discrimination of multiple metal ions. ACS Appl Nano Mater 3:3044–3049. https://doi.org/10.1021/acsanm.0c00394

    Article  CAS  Google Scholar 

  22. Anders G, Borges I (2011) Topological analysis of the molecular charge density and impact sensitivy models of energetic molecules. J Phys Chem A 115:9055–9068. https://doi.org/10.1021/jp204562d

    Article  CAS  PubMed  Google Scholar 

  23. Rice BM, Hare JJ (2002) A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J Phys Chem A 106:1770–1783. https://doi.org/10.1021/jp012602q

    Article  CAS  Google Scholar 

  24. Hu M-L, Joharian M, Razavi SAA et al (2021) Phenolic nitroaromatics detection by fluorinated metal-organic frameworks: Barrier elimination for selective sensing of specific group of nitroaromatics. J Hazard Mater 406:124501. https://doi.org/10.1016/j.jhazmat.2020.124501

    Article  CAS  PubMed  Google Scholar 

  25. Förster T, Kasper KEK der FZ (1955) Konzentrationsabhängigkeit Fluoreszenzspek-. Z Phys Chem (Munich) 59:976–980

  26. Zhelev Z, Ohba H, Bakalova R (2006) Single quantum dot-micelles coated with silica shell as potentially non-cytotoxic fluorescent cell tracers. J Am Chem Soc 128:6324–6325. https://doi.org/10.1021/ja061137d

    Article  CAS  PubMed  Google Scholar 

  27. Nishizawa S, Kato Y, Teramae N (1999) Fluorescence sensing of anions via intramolecular excimer formation in a pyrophosphate-induced self-assembly of a pyrene-functionalized guanidinium receptor [9]. J Am Chem Soc 121:9463–9464. https://doi.org/10.1021/ja991497j

    Article  CAS  Google Scholar 

  28. Belletête M, Bouchard J, Leclerc M, Durocher G (2005) Photophysics and solvent-induced aggregation of 2,7-carbazole-based conjugated polymers. Macromolecules 38:880–887. https://doi.org/10.1021/ma048202t

    Article  CAS  Google Scholar 

  29. Zhang GF, Wang H, Aldred MP et al (2014) General synthetic approach toward geminal-substituted tetraarylethene fluorophores with tunable emission properties: X-ray crystallography, aggregation-induced emission and piezofluorochromism. Chem Mater 26:4433–4446. https://doi.org/10.1021/cm501414b

    Article  CAS  Google Scholar 

  30. Gai L, Chen H, Zou B et al (2012) Ratiometric fluorescence chemodosimeters for fluoride anion based on pyrene excimer/monomer transformation. Chem Commun 48:10721–10723. https://doi.org/10.1039/c2cc35967g

    Article  CAS  Google Scholar 

  31. Mei J, Hong Y, Lam JWY et al (2014) Aggregation-induced emission: The whole is more brilliant than the parts. Adv Mater 26:5429–5479. https://doi.org/10.1002/adma.201401356

    Article  CAS  PubMed  Google Scholar 

  32. Ding D, Li K, Liu B, Tang BZ (2013) Bioprobes based on AIE fluorogens. Acc Chem Res 46:2441–2453. https://doi.org/10.1021/ar3003464

    Article  CAS  PubMed  Google Scholar 

  33. Reynders P, Kühnle W, Zachariasse KA (1990) Ground-state dimers in excimer-forming bichromophoric molecules. 1. bis(pyrenylcarboxy)alkanes. J Am Chem Soc 112:3929–3939. https://doi.org/10.1021/ja00166a032

    Article  CAS  Google Scholar 

  34. Zachariasse KA, Maçanita AL, Kühnle W (1999) Chain length dependence of intramolecular excimer formation with 1, n-bis(1-pyrenylcarboxy)alkanes for n = 1–16, 22, and 32. J Phys Chem B 103:9356–9365. https://doi.org/10.1021/jp991611k

    Article  CAS  Google Scholar 

  35. Kathiravan A, Sundaravel K, Jaccob M et al (2014) Pyrene Schiff base: Photophysics, aggregation induced emission, and antimicrobial properties. J Phys Chem B 118:13573–13581. https://doi.org/10.1021/jp509697n

    Article  CAS  PubMed  Google Scholar 

  36. Beyazkilic P, Yildirim A, Bayindir M (2014) Formation of pyrene excimers in mesoporous ormosil thin films for visual detection of nitro-explosives. ACS Appl Mater Interfaces 6:4997–5004. https://doi.org/10.1021/am406035v

    Article  CAS  PubMed  Google Scholar 

  37. Mosca L, KarimiBehzad S, Anzenbacher P (2015) Small-Molecule Turn-On Fluorescent Probes for RDX. J Am Chem Soc 137:7967–7969. https://doi.org/10.1021/jacs.5b04643

    Article  CAS  PubMed  Google Scholar 

  38. Yang JS, Lin CS, Hwang CY (2001) Cu2+-induced blue shift of the pyrene excimer emission: A new signal transduction mode of pyrene probes. Org Lett 3:889–892. https://doi.org/10.1021/ol015524y

    Article  CAS  PubMed  Google Scholar 

  39. Shyamal M, Mazumdar P, Maity S et al (2016) Pyrene scaffold as real-time fluorescent turn-on chemosensor for selective detection of trace-level Al(III) and its aggregation-induced emission enhancement. J Phys Chem A 120:210–220. https://doi.org/10.1021/acs.jpca.5b09107

    Article  CAS  PubMed  Google Scholar 

  40. Zang L, Liang C, Wang Y et al (2015) A highly specific pyrene-based fluorescent probe for hypochlorite and its application in cell imaging. Sens Actuators, B Chem 211:164–169. https://doi.org/10.1016/j.snb.2015.01.046

    Article  CAS  Google Scholar 

  41. Kumar A, Pandith A, Kim HS (2016) Pyrene-appended imidazolium probe for 2,4,6-trinitrophenol in water. Sens Actuators, B Chem 231:293–301. https://doi.org/10.1016/j.snb.2016.03.033

    Article  CAS  Google Scholar 

  42. Chao J, Li M, Zhang Y et al (2019) A simple fluorescent pH probe and its application in cells. Chem Pap 73:1481–1488. https://doi.org/10.1007/s11696-019-00699-9

    Article  CAS  Google Scholar 

  43. Asha KS, Bhattacharyya K, Mandal S (2014) Discriminative detection of nitro aromatic explosives by a luminescent metal-organic framework. J Mater Chem C 2:10073–10081. https://doi.org/10.1039/c4tc01982b

    Article  CAS  Google Scholar 

  44. Salinas Y, Mañez RM, Marcos MD et al (2012) Optical chemosensors and reagents to detect explosives. Chem Soc Rev 41:1261–1296. https://doi.org/10.1039/c1cs15173h

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt AC, Niehus B, Matysik FM, Engewald W (2006) Identification and quantification of polar nitroaromatic compounds in explosive-contaminated waters by means of HPLC-ESI-MS-MS and HPLC-UV. Chromatographia 63:1–11. https://doi.org/10.1365/s10337-005-0703-8

    Article  CAS  Google Scholar 

  46. Wang G, Li M, Wei Q et al (2021) Design of an AIE-active flexible self-assembled monolayer probe for trace nitroaromatic compound explosive detection. ACS Sensors 6:1849–1856. https://doi.org/10.1021/acssensors.1c00047

    Article  CAS  PubMed  Google Scholar 

  47. Shanmugaraju S, Joshi SA, Mukherjee PS (2011) Fluorescence and visual sensing of nitroaromatic explosives using electron rich discrete fluorophores. J Mater Chem 21:9130. https://doi.org/10.1039/c1jm10406c

    Article  CAS  Google Scholar 

  48. Shi L, Li N, Wang D et al (2021) Environmental pollution analysis based on the luminescent metal organic frameworks: A review. TrAC - Trends Anal Chem 134:116131. https://doi.org/10.1016/j.trac.2020.116131

    Article  CAS  Google Scholar 

  49. Huang T, Sun G, Zhao L et al (2021) Quantitative structure‐activity relationship (QSAR) studies on the toxic effects of nitroaromatic compounds (NACs): A systematic review. Int J Mol Sci 22(16):8557. https://doi.org/10.3390/ijms22168557

  50. Ju K-S, Parales RE (2010) Nitroaromatic compounds, from synthesis to biodegradation. Microbiol Mol Biol Rev 74:250–272. https://doi.org/10.1128/MMBR.00006-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang CL, Yu YY, Fang Z et al (2018) Recent advances in nitroaromatic pollutants bioreduction by electroactive bacteria. Process Biochem 70:129–135. https://doi.org/10.1016/j.procbio.2018.04.019

    Article  CAS  Google Scholar 

  52. Allendorf MD, Bauer CA, Bhakta RK, Houk RJT (2009) Luminescent metal-organic frameworks. Chem Soc Rev 38:1330–1352. https://doi.org/10.1039/b802352m

    Article  CAS  PubMed  Google Scholar 

  53. Kumar P, Deep A, Kim KH (2015) Metal organic frameworks for sensing applications. TrAC - Trends Anal Chem 73:39–53. https://doi.org/10.1016/j.trac.2015.04.009

    Article  CAS  Google Scholar 

  54. Kukkar D, Vellingiri K, Kim KH, Deep A (2018) Recent progress in biological and chemical sensing by luminescent metal-organic frameworks. Sens Actuators, B Chem 273:1346–1370. https://doi.org/10.1016/j.snb.2018.06.128

    Article  CAS  Google Scholar 

  55. Dong J, Zhao D, Lu Y, Sun WY (2019) Photoluminescent metal-organic frameworks and their application for sensing biomolecules. J Mater Chem A 7:22744–22767. https://doi.org/10.1039/c9ta07022b

    Article  CAS  Google Scholar 

  56. Mohan B, Kumar S, Ma S et al (2021) Mechanistic insight into charge and energy transfers of luminescent metal-organic frameworks based sensors for toxic chemicals. Adv Sustain Syst 5:1–23. https://doi.org/10.1002/adsu.202000293

    Article  CAS  Google Scholar 

  57. Ahamad MN, Shahid M, Ahmad M, Sama F (2019) Cu(II) MOFs based on bipyridyls: Topology, magnetism, and exploring sensing ability toward multiple nitroaromatic explosives. ACS Omega 4:7738–7749. https://doi.org/10.1021/acsomega.9b00715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Venkatramaiah N, Kumar S, Patil S (2012) Femtogram detection of explosive nitroaromatics: Fluoranthene-based fluorescent chemosensors. Chem Eur J 18:14745–14751. https://doi.org/10.1002/chem.201201764

    Article  CAS  PubMed  Google Scholar 

  59. Al-Ameer AHA (2021) Preparation, characterization and antibacterial studies of schiff base derivatives with 4-bromo-2,6-dimethylaniline and study their complexes with some transition metal ions. Int J Drug Deliv Technol 11:190–194. https://doi.org/10.25258/ijddt.11.1.35

  60. Batool R, Riaz N, Junaid HM et al (2022) Fluorene-based fluorometric and colorimetric conjugated polymers for sensitive detection of 2,4,6-trinitrophenol explosive in aqueous medium. ACS Omega 7:1057–1070. https://doi.org/10.1021/acsomega.1c05644

    Article  CAS  PubMed  Google Scholar 

  61. Vaiana AC, Neuweiler H, Schulz A et al (2003) Fluorescence quenching of dyes by tryptophan: Interactions at atomic detail from combination of experiment and computer simulation. J Am Chem Soc 125:14564–14572. https://doi.org/10.1021/ja036082j

    Article  CAS  PubMed  Google Scholar 

  62. Xiao F, Pignatello JJ (2015) π+-π Interactions between (hetero)aromatic amine cations and the graphitic surfaces of pyrogenic carbonaceous materials. Environ Sci Technol 49:906–914. https://doi.org/10.1021/es5043029

    Article  CAS  PubMed  Google Scholar 

  63. Boaz H, Rollefson GK (1950) The quenching of fluorescence. Deviations from the stern-volmer law. J Am Chem Soc 72:3435–3443. https://doi.org/10.1021/ja01164a032

    Article  CAS  Google Scholar 

Download references

Funding

This work was not supported by any institution, organization, or person.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MB, AK and ÖÖ. Data interpretation was done by MB, AK, ÖÖ and MK. The first draft of the manuscript was written by MB, AK, ÖÖ and MK. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mustafa Bal.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors declare they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1877 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bal, M., Köse, A., Özpaça, Ö. et al. Pyrene, Anthracene, and Naphthalene-Based Azomethines for Fluorimetric Sensing of Nitroaromatic Compounds. J Fluoresc 33, 1443–1455 (2023). https://doi.org/10.1007/s10895-023-03155-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03155-w

Keywords

Navigation