Skip to main content

Advertisement

Log in

Fluorescein Based Fluorescence Sensors for the Selective Sensing of Various Analytes

  • Review
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescein molecules are extensively used to develop fluorescent probes for various analytes due to their excellent photophysical properties and the spirocyclic structure. The main structural modification of fluorescein occurs at the carboxyl group where different groups can be easily introduced to produce the spirolactam structure which is non-fluorescent. The spirolactam ring opening accounts for the fluorescence and the dual sensing of analytes using fluorescent sensors is still a topic of high interest. There is an increase in the number of dual sensors developed in the past five years and quite a good number of fluorescein derivatives were also reported based on reversible mechanisms. This review analyses environmentally and biologically important cations such as Cu2+, Hg2+, Fe3+, Pd2+, Zn2+, Cd2+, and Mg2+; anions (F, OCl) and small molecules (thiols, CO and H2S). Structural modifications, binding mechanisms, different strategies and a comparative study for selected cations, anions and molecules are outlined in the article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reproduced with permission from Ref. [55]. Copyright (2016) The Royal Society of Chemistry."

Fig. 5

Reproduced with permission from Ref [75], Copyright (2017) Elsevier."

Fig. 6

Reproduced with permission from Ref [84], Copyright (2019) The Royal Society of Chemistry."

Fig. 7

Reproduced with permission from Ref [116], Copyright (2016) Elsevier."

Fig. 8

Reproduced with permission from Ref [122], Copyright (2015) Wiley."

Fig. 9

Reproduced with permission from Ref [128], Copyright (2017) Elsevier”

Fig. 10

Reproduced with permission from Ref [130], Copyright (2017) Elsevier.”

Fig. 11

Reproduced with permission from Ref [136], Copyright (2016) The Royal Society of Chemistry."

Fig. 12

Reproduced with permission from Ref [141], Copyright (2015) Elsevier”

Fig. 13

Reproduced with permission from Ref [147], Copyright (2012) Elsevier”

Fig. 14

Reproduced with permission from Ref. [170], Copyright (2016) Elsevier”

Fig. 15

Reproduced with permission from Ref. [187], Copyright (2016) Elsevier”

Fig. 16

Reproduced with permission from Ref. [193] Copyright (2017) American Chemical Society”

Fig. 17

Reproduced with permission from Ref. [204] Copyright (2017) American Chemical Society”

Similar content being viewed by others

References

  1. Nagarkar SS, Joarder B, Chaudhari AK, Mukherjee S, Ghosh SK (2013) Highly selective detection of nitro explosives by a luminescent metal-organic framework. Angew Chem Int Ed 52:2881–2885. https://doi.org/10.1002/anie.201208885

    Article  CAS  Google Scholar 

  2. Fallas MM, Tanaka N, Buckenmaier SMC, McCalley DV, Chromator J (2013) Influence of phase type and solute structure on changes in retention with pressure in reversed-phase high performance liquid chromatography. J Chromatogr A 1297:37–45. https://doi.org/10.1016/j.chroma.2013.04.006

    Article  CAS  PubMed  Google Scholar 

  3. Rijo R, Riya D, AnithaV SYN, Louis G (2021) Recent advances in bimetallic based nanostructures: Synthesis and electrochemical sensing applications. Microchem J 163:105910. https://doi.org/10.1016/j.microc.2020.105910

    Article  CAS  Google Scholar 

  4. Anitha V, Khadar AMA, Kalluraya B (2006) Simultaneous determination of titanium and molybdenum in steel samples using derivative spectrophotometry in neutral micellar medium. Spectrochim Acta A Mol Biomol Spectrosc 64:383–390. https://doi.org/10.1016/j.saa.2005.07.034

    Article  CAS  Google Scholar 

  5. Kezia S, AnithaV LG (2017) Flavonol based surface modification of doped chalcogenide nanoflakes as an ultrasensitive fluorescence probe for Al3+ ion. Anal Chim Acta 992:94–104. https://doi.org/10.1016/j.aca.2017.08.045

    Article  CAS  Google Scholar 

  6. Ajay Piriya VS, Printo Joseph, Kiruba Daniel SCG, Susithra Lakshmanan, Takatoshi Kinoshita, Muthusamy Sivakumar (2017) Colorimetric sensors for rapid detection of various analytes.Materials mater.sci.Eng.A 78:1231–1245. https://doi.org/10.1016/j.msec.2017.05.018

  7. Sarkar D, Pramanik AK, Mondal TK (2014) Coumarin based ‘turn-on’ fluorescent chemosensor for Zn2+ and and HSO4: an experimental and theoretical study. RSC Adv 4:25341–25347. https://doi.org/10.1039/C4RA02765E

    Article  CAS  Google Scholar 

  8. Egorova OA, Seo H, Amrita C, Ann KH (2010) Reaction-based fluorescent sensing of Au(I)/Au(III) species: mechanistic implications on vinyl gold intermediates. Org Lett 12:401–403. https://doi.org/10.1021/ol902395x

    Article  CAS  PubMed  Google Scholar 

  9. Boens N, Leen V, Dehaen W (2012) Fluorescent indicators based on BODIPY. Chem Soc Rev 41:1130–1172. https://doi.org/10.1039/C1CS15132K

    Article  CAS  PubMed  Google Scholar 

  10. Akshaya KB, Varghese A, Lobo PL, Kumari R, George L (2016) Synthesis and photophysical properties of a novel phthalimide derivative using solvatochromic shift method for the estimation of ground and singlet excited state dipole moments. J Mol Liq 224:247–254. https://doi.org/10.1016/j.molliq.2016.09.115

    Article  CAS  Google Scholar 

  11. Pearce DA, Jotterand N, Carrico IS, Imperiali B (2001) Derivatives of 8-Hydroxy-2-methylquinoline Are Powerful Prototypes for Zinc Sensors in Biological Systems. J Am Chem Soc 123:5160–5161. https://doi.org/10.1021/ja0039839

    Article  CAS  PubMed  Google Scholar 

  12. Sousa M, Pinto M (2005) Synthesis of Xanthones: An Overview. Curr Med Chem 12:2447–2479. https://doi.org/10.2174/092986705774370736

    Article  CAS  PubMed  Google Scholar 

  13. Grim JB, Lavis LD (2011) Synthesis of rhodamine from fluoresceins using Pd catalysed C-N Cross Coupling. Org Lett 13:6354. https://doi.org/10.1021/ol202618t

    Article  CAS  Google Scholar 

  14. Adamczyk M, Grote J (2001) Efficient fluorescein spirolactam and bisspirolactam synthesis. Synth Commun 31:2681–2690. https://doi.org/10.1081/SCC-100105396

    Article  CAS  Google Scholar 

  15. Oliveira E, Bértolo E, Núñez C, Pilla V, Santos HM, Fernández-Lodeiro J, Fernández-Lodeiro A, Djafari J, Capelo JL, Lodeiro C (2017) Green and Red fluorescent dyes for translational applications in imaging and sensing analytes: A dual-color flag. ChemistryOpen 7:9–52. https://doi.org/10.1002/open.201700135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rajasekar M (2020) Recent Development in Fluorescein derivatives. J Mol Struct 1224:129085. https://doi.org/10.1016/j.molstruc.2020.129085

    Article  CAS  Google Scholar 

  17. Banks WA, Kastin AJ, Durham DA (1989) Bidirectional transport of interleukin-1 alpha across the blood-brain barrier. Brain Res Bull 23:433–437. https://doi.org/10.1016/0361-9230(89)90185-8

    Article  CAS  PubMed  Google Scholar 

  18. Zheng H, Zhan XQ, Bian QN, Zhang XJ (2013) Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors. Chem Commun 49:429–447. https://doi.org/10.1039/C2CC35997A

    Article  CAS  Google Scholar 

  19. Shabir G, Saeed A, Channar PA (2017) A Review on the Recent Trends in Synthetic Strategies and Applications of Xanthene Dyes. Mini Rev Org Chem 15:166–197. https://doi.org/10.2174/1570193X14666170518130008

    Article  Google Scholar 

  20. Yan F, Fan K, Zhang R, Zu F, Xu J, Li X (2017) Fluorescein applications as fluorescent probes for the detection of analytes. TrAC Trends Anal Chem 97:15–35. https://doi.org/10.1016/j.trac.2017.08.013

    Article  CAS  Google Scholar 

  21. Bayraktutan T, Onganer Y, Meral K (2016) Polyelectrolyte-induced H-aggregation of Merocyanine 540 and its application in metal ions detection as a colorimetric sensor. Sens Actuators B Chem 226:52–61. https://doi.org/10.1016/j.snb.2015.11.115

    Article  CAS  Google Scholar 

  22. Kaur M, Cho MJ, Choi DH (2016) A phenothiazine-based naked-eye fluorescent probe for the dual detection of Hg2+ and Cu2+: application as a solid state sensor. Dyes Pigm 125:1–7. https://doi.org/10.1016/j.dyepig.2015.09.030

    Article  CAS  Google Scholar 

  23. Miyashita Y, Mori J, Yokoyama H, Yoshikane M, Watanabe H, Takeuchi K et al (2008) A new model system for studying excited states of dye aggregates of photographic color paper. J Photochem Photobiol A: Chem 194:129–135. https://doi.org/10.1016/j.jphotochem.2007.07.025

    Article  CAS  Google Scholar 

  24. Walker BJ, Dorn A, Bulovic V, Bawendi MG (2011) Color-selective photocurrent enhancement in coupled J-aggregate/nanowires formed in solution. Nano Lett 11:2655–2659. https://doi.org/10.1021/nl200679n

    Article  CAS  PubMed  Google Scholar 

  25. Egawa T, Koide Y, Hanaoka K, Komatsu T, Terai T, Nagano T (2011) Development of a fluorescein analogue, TokyoMagenta, as a novel scaffold for fluorescence probes in red region. Chem Commun 47:4162–4164. https://doi.org/10.1039/C1CC00078K

    Article  CAS  Google Scholar 

  26. Czarnik AW (1993) Fluorescent Chemosensors for Ion and Molecular Recognition. American Chemical Society, Washington DC, USA

    Book  Google Scholar 

  27. Juan Z, Swager TM (2005) Poly (arylene ethynylene) s in chemosensing and biosensing. Adv Polym Sci 177:151–179. https://doi.org/10.1007/b101377

    Article  CAS  Google Scholar 

  28. Thomas W, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386. https://doi.org/10.1021/cr0501339

    Article  CAS  PubMed  Google Scholar 

  29. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40. https://doi.org/10.1016/S0010-8545(00)00246-0

    Article  CAS  Google Scholar 

  30. Gunnlaugsson T, Glynn M, Tocci GM, Kruger PE, Pfeffer FM (2006) Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coord Chem Rev 250:3094. https://doi.org/10.1016/j.ccr.2006.08.017

    Article  CAS  Google Scholar 

  31. Sjöback R, Nygren J, Kubista M (1995) Absorption and fluorescence properties of fluorescein. Spectrochim Acta A Mol Biomol Spectrosc 51:L7–L21. https://doi.org/10.1016/0584-8539(95)01421-P

    Article  Google Scholar 

  32. Aysha TS, El-Sedik MS, Mohamed MBI, Gaballah ST, Kamel MM (2019) Dual functional colorimetric and turn-off fluorescence probe based on pyrrolinone ester hydrazone dye derivative for Cu2+ monitoring and pH change. Dyes Pigm 170:107549. https://doi.org/10.1016/j.dyepig.2019.107549

    Article  CAS  Google Scholar 

  33. Kurita M, Momma M, Mizuguchi K, Nakano H (2013) Fluorescence Color Change of Aggregation-Induced Emission of 4-[Bis(4-methylphenyl)amino]benzaldehyde. Chem Phys Chem 14:3898–3901. https://doi.org/10.1002/cphc.201300781

    Article  CAS  PubMed  Google Scholar 

  34. Kim HN, Lee MH, Kim HJ, Kim JS, Yoon J (2008) A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem Soc Rev 37:1465–1472. https://doi.org/10.1039/B802497A

    Article  CAS  PubMed  Google Scholar 

  35. Quang DT, Kim JS (2010) Fluoro- and Chromogenic Chemodosimeters for Heavy Metal Ion Detection in Solution and Biospecimens. Chem Rev 110:6280–6301. https://doi.org/10.1021/cr100154p

    Article  CAS  Google Scholar 

  36. Terai T, Nagano T (2008) Fluorescent probes for bioimaging applications. Curr Opin Chem Biol 12:515–521. https://doi.org/10.1016/j.cbpa.2008.08.007

    Article  CAS  PubMed  Google Scholar 

  37. Valeur B, Leray I (2003) A highly sensitive and selective fluorescent molecular sensor for Pb (II) based on a calix [4] arene bearing four dansyl groups. Chem Commun 8:996–997. https://doi.org/10.1039/B301323E

    Article  Google Scholar 

  38. Shamsipur M, Alizadeh K, Hosseini M, Caltagiroe C, Lippolis V (2006) A selective optode membrane for silver ion based on fluorescence quenching of the dansylamidopropyl pendant arm derivative of 1-aza-4, 7, 10-trithiacyclododecane. Sens Actuators B Chem 113:892–899. https://doi.org/10.1016/j.snb.2005.03.117

    Article  CAS  Google Scholar 

  39. Aragoni MC, Arca M, Bencini A, Blake AJ, Caltagirone C, Filippo GD, Devillanova FA, Garau A, Gelbrich T, Hurssthouse MB et al (2007) Tuning the Selectivity/Specificity of Fluorescent Metal Ion Sensors Based on N2S2 Pyridine-Containing Macrocyclic Ligands by Changing the Fluorogenic Subunit. Inorg Chem 46:4548–4559. https://doi.org/10.1021/ic070169e

    Article  CAS  PubMed  Google Scholar 

  40. Thorfinnur G, Haslin DPA, Mark G, Paul EK, Gillian MH, Frederick MP, Gdos CM, S, Juliann T (2005) Fluorescent Photoinduced Electron Transfer (PET) Sensors for Anions; From Design to Potential Application. J Fluoresc 15:287–299. https://doi.org/10.1007/s10895-005-2627-y

    Article  CAS  Google Scholar 

  41. Hao F, Gurpreet K, Binghe W (2004) Progress in Boronic Acid-Based Fluorescent Glucose Sensors. J Fluoresc 14:–489. https://doi.org/10.1023/B:JOFL.0000039336.51399.3b

  42. Pydisetti GR, Birudaraju S, Siva TR (2019) Colorimetric and turn-on Fluorescence Chemosensor for Hg2+ Ion Detection in Aqueous Media. J Fluoresc 29:353–360. https://doi.org/10.1007/s10895-018-02342-4

    Article  CAS  Google Scholar 

  43. Kumar M, Kumar N, Bhalla V, Sharma PR, Kaur T (2011) Highly selective Fluorescence Turn-on Chemodosimeter Based on Rhodamine for Nanomolar Detection of Copper Ions. Org Lett 14:406–409. https://doi.org/10.1021/ol203186b

    Article  CAS  PubMed  Google Scholar 

  44. Strausak D, Mercer JFB, Dieter HH, Stremmel W, Multhaup G (2001) Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson disease. Brain Res Bull 55:175–185. https://doi.org/10.1016/s0361-9230(01)00454-3

    Article  CAS  PubMed  Google Scholar 

  45. Stelmashook EV, Isaev NK, Genrikhs EE, Amelkina GA, Khaspekov LG, Skrebitsky VG, Illarioshkin SN (2014) Role of zinc and copper ions in the pathogenetic mechanisms of Alzheimer’s and Parkinson’s diseases. Biochemistry 79:391–396. https://doi.org/10.1134/S0006297914050022

    Article  CAS  PubMed  Google Scholar 

  46. Cakic M, Mitic Z, Nikolic SI, Savic IM (2013) Design and optimization of drugs used to treat copper deficiency. Expert Opin Drug Discov 8:1253–1263. https://doi.org/10.1517/17460441.2013.825245

    Article  CAS  PubMed  Google Scholar 

  47. Sivaraman G, Iniya M , Kotla N.G, Singaravadivel S, Gulyani A, Chellappa D (2018) Chemically diverse small molecule fluorescent chemosensors for copper ion. Coord Chem Rev 357 50–104. https://doi.org/10.1016/j.ccr.2017.11.020

  48. Diwana U, Kumar A, Kumar V, Upadhyaya KK, Roychowdhury PK (2014) A water compatible turn ‘on’ optical probe for Cu2+ based on a fluorescein–sugar conjugate. Sens Actuators B Chem 196:345–435. https://doi.org/10.1016/j.snb.2014.02.031

    Article  CAS  Google Scholar 

  49. Jesionowski T, Nowacka M, Ciesielczyk F (2012) Electrokinetic properties of hybrid pigments obtained via adsorption of organic dyes on the silica support. Pigment Resin Technol 41:9–19. https://doi.org/10.1108/03699421211192235

    Article  CAS  Google Scholar 

  50. Jesionowski T, Przybylska A, Kurc B, Ciesielczyk F (2011) Hybrid pigments preparation via adsorption of CI Mordant Red 3 on both unmodified and aminosilane–functionalised silica supports. Dyes Pigm 89:127–136. https://doi.org/10.1016/j.dyepig.2010.09.014

    Article  CAS  Google Scholar 

  51. Chen X, Tong A (2012) Modification of silica nanoparticles with fluorescein hydrozide for Cu(II)sensing. Dyes Pigm 95:776–783. https://doi.org/10.1016/j.dyepig.2012.06.012

    Article  CAS  Google Scholar 

  52. Bao X, Cao Q, Wu X, Shu H, Zhou B, Geng Y, Zhu J (2016) Design and synthesis of a new selective fluorescent chemical sensor for Cu2+ based on a Pyrrole moiety and a Fluorescein conjugate. Tetrahedron Lett 57:942–948. https://doi.org/10.1016/j.tetlet.2016.01.056

    Article  CAS  Google Scholar 

  53. Li T, Yang Z, Li Y, Liu Z, Qi G, Wang B (2011) A novel fluorescein derivative as a colorimetric chemosensor for detecting copper(II) ion. Dyes Pigm 88:103–108. https://doi.org/10.1016/j.dyepig.2010.05.008

    Article  CAS  Google Scholar 

  54. Elmorsi TM, Aysha TS, Machalicky O, Mohamed MBI, Bedair AH (2017) A dual functional colorimetric and fluorescence chemosensor based on benzo[f]fluorescein dye derivatives for copper ions and pH; kinetics and thermodynamic study. Sens Actuators B Chem 253:437–450. https://doi.org/10.1016/j.snb.2017.06.084

    Article  CAS  Google Scholar 

  55. Rathod R, Bera S, Singh M, Mondal D (2016) A Colorimetric and Fluorometric Investigation of Cu(II) ion in Aqueous Medium with a Fluorescein-based Chemosensor. RSC Adv 6:34608–34615. https://doi.org/10.1039/C6RA03021A

    Article  CAS  Google Scholar 

  56. Wua X, Donga GX, W, Maa J, Chaoa J, Lic C, Wanga Li, Dong C (2016) A novel fluorescein-based colorimetric probe for Cu2+ detection. RSC Adv 6:59677–59683. https://doi.org/10.1039/C6RA07236D

    Article  CAS  Google Scholar 

  57. Zhang J, Li Z, Wei Y, Ma J, Shuang S, Cai Z, Dong C (2014) A selectively fluorescein-based colorimetric probe for detecting copper(II) ion. Spectrochim Acta A Mol Biomol Spectrosc 122:731–736. https://doi.org/10.1016/j.saa.2013.11.096

    Article  CAS  PubMed  Google Scholar 

  58. Chen X, Ma H (2006) A selective fluorescence-on reaction of spiro form fluorescein hydrazide with Cu(II). Anal Chim Acta 575:217–222. https://doi.org/10.1016/j.aca.2006.05.097

    Article  CAS  PubMed  Google Scholar 

  59. Liu G, Ren P, Yang F, Dou X, Wang J, Song Y (2018) Two novel colorimetric probes (5-HMBA-FH and 3-HMBA-FH) based on fluorescein for copper(II) ion detection. Can J Chem 96:1037–1045. https://doi.org/10.1139/cjc-2018-0105

    Article  CAS  Google Scholar 

  60. Volkhard Helms (2008) Fluorescence Resonance Energy Transfer. Principles of Computational Cell Biology, 202, Wiley-VCH: Weinheim.

  61. Mondal S, Manna SK, Maiti K, Maji R, Ali SS, Manna S, Mandal S, Uddin MdR, Mahapatra AK (2017) Phenanthroline-fluorescein molecular hybrid as a ratiometric and selective fluorescent chemosensor for Cu2+ via FRET strategy: synthesis, computational studies and in vitro applications. Supramol Chem 29:616–626. https://doi.org/10.1080/10610278.2017.1301452

    Article  CAS  Google Scholar 

  62. Wanga S, Wanga X, Zhanga Z, Chen L (2015) Highly sensitive fluorescence detection of copper ion based on its catalytic oxidation to cysteine indicated by fluorescein isothiocyanate functionalized gold nanoparticles. Colloids Surf A Physicochem Eng Asp 468:333–338. https://doi.org/10.1016/j.colsurfa.2014.12.050

    Article  CAS  Google Scholar 

  63. Mahajan PG, Dige NC, Vanjare B, Hui Eo S, Kim SJ, Hwan LK (2019) A nano sensor for sensitive and selective detection of Cu2+ based on fluorescein: Cell imaging and drinking water analysis. Spectrochim Acta A Mol Biomol Spectrosc 216:105–116. https://doi.org/10.1016/j.saa.2019.03.021

    Article  CAS  PubMed  Google Scholar 

  64. Helal A, Kim HS, Zain H, Yamani NS, M (2015) Fluorescein-N-Methylimidazole Conjugate as Cu2+ Sensor in Mixed Aqueous Media Through Electron Transfer. J Fluoresc 26:1–9. https://doi.org/10.1007/s10895-015-1713-z

    Article  CAS  PubMed  Google Scholar 

  65. Ma L, Liu G, Pu S, Ding H, Li G (2016) A highly selective fluorescent chemosensor for Cu2+ based on a new diarylethene with triazole-linked fluorescein. Tetrahedron 72:985–991. https://doi.org/10.1016/J.TET.2015.12.068

    Article  CAS  Google Scholar 

  66. Fan C, Luo S, Liu R (2015) Optimization of an analytical method for the spectrophotometric determination of copper in tea and water samples after ultrasonic assisted cloud point extraction using a benzothiazole fluorescein derivative complexing agent. RSC Adv 5:65321–65327. https://doi.org/10.1039/C5RA11212E

    Article  CAS  Google Scholar 

  67. Lambert KF, Evers DC, Warner KA, King SL, Selin NE (2012) Integrating mercury science and policy in the marine context: Challenges and opportunities. Environ Res 119:132–142. https://doi.org/10.1016/j.envres.2012.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Syversen T, Kaur P (2012) The toxicology of mercury and its compounds. J Trace Elem Med Biol 26:215–226. https://doi.org/10.1016/j.jtemb.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  69. Ma YH, Zhang Z, Xu YL, Ma M, Chen B, Wei L, Xiao LH (2016) A bright carbon-dot based fluorescent probe for selective and sensitive detection of mercury ions. Talanta 161:476–481. https://doi.org/10.1016/j.talanta.2016.08.082

    Article  CAS  PubMed  Google Scholar 

  70. Kb A, G R, Sasitharan K, TP V, Varghese A, George L (2019) Trace level determination of Hg2+ ions in environmental samples with mercaptotriazole-functionalized TiO2 nanostructure-based fluorescent probe. Anal Methods 11:537–547. https://doi.org/10.1039/C8AY02109K

    Article  CAS  Google Scholar 

  71. Sparano BA, Shahi SP, Koide K (2004) Effect of binding and conformation on fluorescence quenching in new 2′,7′-dichlorofluorescein derivatives. Org Lett 6:1947–1949. https://doi.org/10.1021/ol049537y

    Article  CAS  PubMed  Google Scholar 

  72. Kim HJ, Park JE, Choi MG, Ahn S, Chang S (2010) Selective chromogenic and fluorogenic signalling of Hg2+ ions using a fluorescein-coumarin conjugate. Dyes Pigm 84:54–58. https://doi.org/10.1016/j.dyepig.2009.06.009

    Article  CAS  Google Scholar 

  73. Taki M, Iyoshi S, Ojida A, Hamachi I, Yamamoto YJ (2010) Development of highly sensitive fluorescent probes for detection of intracellular copper (I) in living systems. Am Chem Soc 132:5938–5939. https://doi.org/10.1021/ja100714p

    Article  CAS  Google Scholar 

  74. Ruan YB, Xie J (2011) Unexpected highly selective fluorescence ‘turn-on’ and ratiometric detection of Hg2+ based on fluorescein platform. Tetrahedron 67:8717–8723. https://doi.org/10.1016/j.tet.2011.09.028

    Article  CAS  Google Scholar 

  75. Feng Y, Kuai Z, Song Y, Guo J, Yang Q, Shan Y, Li Y (2017) A novel “turn-on” thiooxofluorescein-based colorimetric and fluorescent sensor for Hg2+ and its application in living cells. Talanta 170:103–110. https://doi.org/10.1016/j.talanta.2017.03.099

    Article  CAS  PubMed  Google Scholar 

  76. Guang S, Tian J, Wei G, Yan Z, Pan H, Feng J, Xu H (2017) A modified fluorescein derivative with improved water-solubility for turn-on fluorescent determination of Hg2+ in aqueous and living cells. Talanta 170:89–96. https://doi.org/10.1016/j.talanta.2017.03.108

    Article  CAS  PubMed  Google Scholar 

  77. Liu D, Wang Y, Wang R, Wang B, Chang H, Chen J, Yang G, He H (2018) Fluorescein-based fluorescent sensor with high selectivity for mercury and its imaging in living cells. Inorg Chem Commun 89:46–50. https://doi.org/10.1016/j.inoche.2018.01.016

    Article  CAS  Google Scholar 

  78. Qu Z, Wang L, Fang S, Qin D, Zhou J, Yong G, Duan H (2019) Fluorescein-immobilized optical hydrogels: Synthesis and its application for detection of Hg2+. Microchem J 150:104198. https://www.x-mol.com/paperRedirect/5820391

  79. Bothwell TH, Charlton RW, Cook JD, Finch CA (1979) Iron Metabolism in Man. Blackwell Scientific, Oxford

    Google Scholar 

  80. Crichton, RR (2001) Inorganic Biochemistry of Iron Metabolism; John Wiley & Sons: West Sussex

  81. Ma Y, Hider RC (2009) The selective quantification of iron by hexadentate fluorescent probes. Bioorg Med Chem 17:8093–8101. https://doi.org/10.1016/j.bmc.2009.09.052

    Article  CAS  PubMed  Google Scholar 

  82. Gao Y, Liu H, Liu Q, Wang W (2016) A novel colorimetric and OFF-ON fluorescent chemosensor based on fluorescein derivative for the detection of Fe3+ in aqueous solution and living cells. Tetrahedron Lett 17:1852–1855. https://doi.org/10.1016/j.tetlet.2016.03.050

    Article  CAS  Google Scholar 

  83. Queirós C, Silva AMG, Lopes SC, Ivanova G, Gameiro P, Rangel M (2012) A novel fluorescein-based dye containing a catechol chelating unit to sense iron(III). Dyes Pigm 93:1447–1455. https://doi.org/10.1016/j.dyepig.2011.10.010

    Article  CAS  Google Scholar 

  84. Ma T, Zhao X, Matsuo Y, Song J, Zhao R, Faheem M, Chen M, Zhang Y, Zhu TY, G, (2019) Fluorescein-based fluorescent porous aromatic framework for Fe3+ detection with high sensitivity. J Mater Chem C 7:2327–2332. https://doi.org/10.1039/C8TC06288A

    Article  CAS  Google Scholar 

  85. Ays Merve S, Onganer Y, Meral K (2017) An unusual “off-on” fluorescence sensor for iron(III) detection based on fluorescein–reduced graphene oxide functionalized with polyethyleneimine. Sens Actuators B Chem 239:343–351. https://doi.org/10.1016/j.snb.2016.08.025

    Article  CAS  Google Scholar 

  86. Kumar A, Rao GK, Saleem F, Kumar.R, Singh A.K Hazard J (2014) Palladium (ii) complexes bearing the 1, 2, 3-triazole based organosulfur/selenium ligand: synthesis, structure and applications in Heck and Suzuki-Miyaura coupling. RSC Adv 4:56102–56111. https://doi.org/10.1039/C4RA09574J

    Article  CAS  Google Scholar 

  87. Reddy G U, Ali F, Taye N, Chattopadhyay S, Das A. (2015) A new turn on Pd2+ -specific fluorescence probe and its use as an Imaging reagent for cellular uptake in Hct116 cells. Chem Commun 51: 3649–3652https://doi.org/10.1039/C4CC10171E

  88. Wiseman CLS, Zereini F (2009) A review of recent evidence Total Environ. Sci. Airborne particulate matter, platinum group elements and human health. Sci Total Environ 407:2493–2500. https://doi.org/10.1016/j.scitotenv.2008.12.057

    Article  CAS  PubMed  Google Scholar 

  89. Spicer CD, Triemer T, Davis BG, Am J (2014) Palladium-Mediated Cell-Surface Labeling. J Am Chem Soc 134:800–803. https://doi.org/10.1021/ja209352s

    Article  CAS  Google Scholar 

  90. Yusop RM, Unciti-Broceta A, Johansson EMV, Sánchez-Martín RM, Bradley M (2011) Palladium-mediated intracellular chemistry. Nat Chem 3:239–243. https://doi.org/10.1038/nchem.981

    Article  CAS  PubMed  Google Scholar 

  91. Santra M, Kyun Ko S, Shin I, Han Ahn K (2010) Fluorescent detection of palladium species with an O-propargylated fluorescein. Chem Commun 46:3964–3966. https://doi.org/10.1039/C001922D

    Article  CAS  Google Scholar 

  92. Kitley WR, Santa Maria PJ, Cloyd RA, Laura MW (2012) Synthesis of High Contrast Fluorescein-Diethers for Rapid Bench-Top Sensing of Palladium. Chem Commun 51:8520–8523. https://doi.org/10.1039/C5CC02192H

    Article  CAS  Google Scholar 

  93. Panchompoo J, Aldous L, Baker M, Wallace MI, Richard GC (2012) One-step synthesis of fluorescein modified nano-carbon for Pd(II) detection via fluorescence quenching. Analyst 137:2054–2062. https://doi.org/10.1039/C2AN16261J

    Article  CAS  PubMed  Google Scholar 

  94. Wei G, Wang L, Jiao J, Hou J, Cheng Y, Zhu C (2012) Cu2+ triggered fluorescence sensor based on fluorescein derivative for Pd2+ detection. Tetrahedron Lett 53:3459–3462. https://doi.org/10.1016/j.tetlet.2012.04.108

    Article  CAS  Google Scholar 

  95. Silva JD, Williams R (2001) The biological chemistry of the elements. Oxford University Press

    Google Scholar 

  96. Beyersmann D, Haase H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14:331–341. https://doi.org/10.1023/A:1012905406548

    Article  CAS  PubMed  Google Scholar 

  97. Nriagu J (2011) Zinc toxicity in humans. Encycl Environ Heal pp. 801–807

  98. Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462. https://doi.org/10.1038/nrn1671

    Article  CAS  PubMed  Google Scholar 

  99. Wang D, Xiang X, Yang X, Wang X, Guo Y, Liu W, Qin W (2014) Fluorescein-based chromo-fluorescent probe for zinc in aqueous solution: spirolactam ring opened or closed? Sens Actuators B Chem 201:246–254. https://doi.org/10.1016/j.snb.2014.05.019

    Article  CAS  Google Scholar 

  100. An J, Yan M, Yang Z, Li T, Zhou Q (2013)A turn-on fluorescent sensor for Zn (II) based on fluorescein-coumarin conjugate. Dyes Pigm 99:1–5. https://doi.org/10.1016/j.dyepig.2013.04.018

  101. Chantalakana K, Choengchan N, Yingyuad P, Thongyoo P (2016) A highly selective ‘turn-on’ fluorescent sensor for Zn2+ based on fluorescein conjugates. Tetrahedron Lett 57:1146–1149. https://doi.org/10.1016/j.tetlet.2016.01.106

    Article  CAS  Google Scholar 

  102. Clark MA, Duffy K, Tibrewala J, Lippard SJ (2003) Synthesis and metal-binding properties of chelating fluorescein derivatives. Org Lett 5:2051–2054. https://doi.org/10.1021/ol0344570

    Article  CAS  PubMed  Google Scholar 

  103. Vidya B, Sivaraman G, Sumesh RS, Chellappa D (2016) Fluorescein-Based ‘“Turn On”’ Fluorescence Detection of Zn2+ and Its Applications in Imaging of Zn2+ in Apoptotic Cells. ChemistrySelect 1:4024–4029. https://doi.org/10.1002/slct.201600863

    Article  CAS  Google Scholar 

  104. Kumari R, George VAL (2017) Estimation of Ground-State and Singlet Excited-State Dipole Moments of Substituted Schiff Bases Containing Oxazolidin-2-one Moiety through Solvatochromic Methods. J Fluoresc 27:151–165. https://doi.org/10.1007/s10895-016-1942-9

    Article  CAS  PubMed  Google Scholar 

  105. Das B, Jana A, Mahapatra AD, Chattopadhyay D, Dhara A, Mabhai S, Dey S (2019) Fluorescein derived Schiff base as fluorimetric zinc (II) sensor via ‘turn on’ response and its application in live cell imaging. Spectrochim Acta A Mol Biomol Spectrosc 212:222–231. https://doi.org/10.1016/j.saa.2018.12.053

    Article  CAS  PubMed  Google Scholar 

  106. Erdemir S, Tabakci B (2017) Selective and Sensitive Fluorescein-Benzothiazole Based Fluorescent Sensor for Zn2+ Ion in Aqueous Media. J Fluoresc 27:2145–2152. https://doi.org/10.1007/s10895-017-2153-8

    Article  CAS  PubMed  Google Scholar 

  107. Satarug S, Garrett SH, Sens MA, Sens DA (2010) Cadmium, Environmental Exposure, and Health Outcomes. Environ Health Perspect 118:182–190. https://doi.org/10.1289/ehp.0901234

    Article  CAS  PubMed  Google Scholar 

  108. Sabir S, Akash MSH, Fiayyaz F, Saleem U, Mehmood MH, Rehman K (2019) Role of cadmium and arsenic as endocrine disruptors in the metabolism of carbohydrates: Inserting the association into perspectives. Biomed Pharmacother 114:108802. https://doi.org/10.1016/j.biopha.2019.108802

    Article  CAS  PubMed  Google Scholar 

  109. Sotomayor CG, Groothof D, Eisenga VJ, Knobbe JMF et al (2021) Plasma cadmium is associated with increased risk of long-term kidney graft failure. Kidney Int 99:1213–1224. https://doi.org/10.1016/j.kint.2020.08.027

    Article  CAS  PubMed  Google Scholar 

  110. Bernhoft RA (2013) Cadmium Toxicity and Treatment. Sci World J 2013:1–7. https://doi.org/10.1155/2013/394652

    Article  CAS  Google Scholar 

  111. Rana MN, Tangpong J, Rahman MM (2018) Toxicodynamics of Lead, Cadmium, Mercury and Arsenic- induced kidney toxicity and treatment strategy: A mini review. Toxicol Rep 5:704–713. https://doi.org/10.1016/j.toxrep.2018.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pak Y, Swamy K, Yoon J (2015) Recent Progress in Fluorescent Imaging Probes. Sensors 15:24374–24396. https://doi.org/10.3390/s150924374

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gui R, An X, Huang W (2013) An improved method for ratiometric fluorescence detection of pH and Cd2+ using fluorescein isothiocyanate–quantum dots conjugates. Anal Chim Acta 767:134–140. https://doi.org/10.1016/j.aca.2013.01.006

    Article  CAS  PubMed  Google Scholar 

  114. Liu X, Liu D, Qi J, Cui Z, Chang H, He H, Yang G (2015) A new fluorescent sensor for Cd2+ and its application in living cells imaging. Tetrahedron Lett 56:1322–1327. https://doi.org/10.1016/j.tetlet.2015.02.010

    Article  CAS  Google Scholar 

  115. Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Photochromism of Diarylethene Molecules and Crystals: Memories, Switches, and Actuators. Chem Rev 114:12174–12277. https://doi.org/10.1021/cr500249p

    Article  CAS  PubMed  Google Scholar 

  116. Li G, Liu G, Zhang D, Pu S (2016) A new fluorescence probe based on fluorescein-diarylethene fluorescence resonance energy transfer system for rapid detection of Cd2+. Tetrahedron 72:6390–6396. https://doi.org/10.1016/j.tet.2016.08.037

    Article  CAS  Google Scholar 

  117. Janning C, Willbold E, Vogt C, Nellesen J, Meyer-Lindenberg A, Windhagen H, Thorey F, Witte F (2010) Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling. Acta Biomater 6:1861–1868. https://doi.org/10.1016/j.actbio.2009.12.037

    Article  CAS  PubMed  Google Scholar 

  118. Martinez-Jimenez MI, Garcia-Gomez S, Bebenek K, Sastre-Moreno G, Calvo PA, Diaz-Talavera A, Kunkel TA, Blanco L (2015) Alternative solutions and new scenarios for translesion DNA synthesis by human PrimPol. DNA Repair 29:127–138. https://doi.org/10.1016/j.dnarep.2015.02.013

    Article  CAS  PubMed  Google Scholar 

  119. Rude RK, Gruber HE (2004) Magnesium deficiency and osteoporosis: animal and human observations. J Nutr Biochem 15:710–716. https://doi.org/10.1016/j.jnutbio.2004.08.001

    Article  CAS  PubMed  Google Scholar 

  120. Svagzdiene M, Sirvinskas E, Baranauskiene D, Adukauskiene D (2015) Correlation of magnesium deficiency with C-reactive protein in elective cardiac surgery with cardiopulmonary bypass for ischemic heart disease. Medicina 51:100–106. https://doi.org/10.1016/j.medici.2015.03.003

    Article  PubMed  Google Scholar 

  121. Moncayo R, Moncayo H (2014) Exploring the aspect of psychosomatics in hypothyroidism: The WOMED model of body-mind interactions based on musculoskeletal changes psychological stressors, and low levels of magnesium. Woman-Psychosom Gynaecol Obst 1:1–11. https://doi.org/10.1016/j.woman.2014.02.001

    Article  Google Scholar 

  122. Ge F, Yang C, Cai Z (2015) Fluorescence Sensor Performance of a New Fluorescein Derivate: [2-Morpholine-4-(6-chlorine-1,3,5-s-triazine)-amino]fluorescein. Bull Korean Chem Soc 36:2703–2709. https://doi.org/10.1002/bkcs.10551

    Article  CAS  Google Scholar 

  123. Cho H, Hee Seo S, Na Y, Kwon Y (2018) The Synthesis and Anticancer Activities of Chiral Epoxy-substituted Chromone Analogs. Bioorg Chem 84:347–354. https://doi.org/10.1016/j.bioorg.2018.11.054

    Article  CAS  Google Scholar 

  124. Li C, Li S, Wang G, Yang Z (2015) Spectroscopic properties of a chromone-fluorescein conjugate as Mg2+ “turn on” fluorescent probe. J Photoch Photobio A 356:700–707. https://doi.org/10.1016/j.jphotochem.2016.03.001

    Article  CAS  Google Scholar 

  125. Hou L, Feng J, Wang Y, Dong C, Shuang S, Wang Y (2017) Single fluorescein-based probe for selective colorimetric and fluorometric dual sensing of Al3+ and Cu2+. Sens Actuators B 247:451–460. https://doi.org/10.1016/j.snb.2017.03.027

    Article  CAS  Google Scholar 

  126. Zhao G, Wei G, Yan Z, Guo B, Guang S, Wu R, Xu H (2019) A multiple fluorescein-based turn-on fluorophore (FHCS) identified for simultaneous determination and living imaging of toxic Al3+ and Zn2+ by improved Stokes shift. Anal Chim Acta 1095:185–196. https://doi.org/10.1016/j.aca.2019.10.025

    Article  CAS  PubMed  Google Scholar 

  127. Kaura P, Lala B, Kaura N, Singhb G, Singhb A, Kaurc G, Singh J (2019) Selective two way Cd(II) and Co(II) ions detection by 1,2,3–triazole linked fluorescein derivative. J Photoch Photobio A 382:111847. https://doi.org/10.1016/j.jphotochem.2019.05.010

  128. Erdemir S, Kocyigit O (2017) A novel dye based on phenolphthalein-fluorescein as a fluorescent probe for the dual-channel detection of Hg2+ and Zn2+. Dyes Pigm 145:72–79. https://doi.org/10.1016/j.dyepig.2017.05.053

    Article  CAS  Google Scholar 

  129. Gale PA, Caltagirone C (2017) Fluorescent and colorimetric sensors for anionic species. Coord Chem Rev 354:2–27. https://doi.org/10.1016/j.ccr.2017.05.003

    Article  CAS  Google Scholar 

  130. Kaur N, Kaur G, Fegade UA, Singh A, Sahoo SK, Kuwar AS, Singh N (2017) Anion sensing with chemosensors having multiple NH recognition units. Trac-Trend Anal Chem 95:86–109. https://doi.org/10.1016/j.trac.2017.08.003

    Article  CAS  Google Scholar 

  131. Anjaneyulu L, Kumar EA, Sankannavar R, Rao KK (2012) Defluoridation of Drinking Water and Rainwater Harvesting Using a Solar Still. Ind Eng Chem Res 51:8040–8048. https://doi.org/10.1021/ie201692q

    Article  CAS  Google Scholar 

  132. Liu JM, Lin LP, Wang XX, Jiao L, Cui ML, Jiang SL, Cai WL, Zhang LH, Zeng ZY (2013) Zr(H2O)2EDTA modulated luminescent carbon dots as fluorescent probes for fluoride detection. Analyst 138:278–283. https://doi.org/10.1039/C2AN36055A

    Article  CAS  PubMed  Google Scholar 

  133. U.S. Department of Health and Human Services Federal Panel on Community Water Fluoridation (2015) U.S. Public Health Service Recommendation for Fluoride Concentration in Drinking Water for the Prevention of Dental Caries. Public Health Reports 130:318–331. https://doi.org/10.1177/003335491513000408

    Article  PubMed Central  Google Scholar 

  134. Renuga D, Udhayakumari D, Suganya S, Velmathi S (2012) Novel thiophene based colorimetric and fluorescent receptor for selective recognition of fluoride ions. Tetrahedron Lett 53:5068–5070. https://doi.org/10.1016/j.tetlet.2012.06.147

    Article  CAS  Google Scholar 

  135. Song P, Ding JX, Chu TS (2012) TD-DFT study on the excited-state proton transfer in the fluoride sensing of a turn-off type fluorescent chemosensor based on anthracene derivatives. Spectrochim Acta A Mol Biomol Spectrosc 97:746–752. https://doi.org/10.1016/j.saa.2012.07.010

    Article  CAS  PubMed  Google Scholar 

  136. Zimmerman JR, Criss C, Evans S, Ernst M, Nieszala M, Stafford A, Szczerba J (2018) Fluorescent sensor for fluoride anion based on a sulfonamido-chromone scaffold. Tetrahedron Lett 59:2473–2476. https://doi.org/10.1016/j.tetlet.2018.05.050

    Article  CAS  Google Scholar 

  137. Yang X-F, Wang L, Xu H, Zhao, (2009) A fluorescein-based fluorogenic and chromogenic chemodosimeter for the sensitive detection of sulfide anion in aqueous solution. M Anal Chim Acta 631:91–95. https://doi.org/10.1016/j.aca.2008.10.037

    Article  CAS  Google Scholar 

  138. Asthana SK, Kumar A, Neeraj, Upadhyay KK (2014) A reaction based chromofluorogenic turn-on probe for specific detection of fluoride over sulfide/thiols. Tetrahedron Lett 55:5988–5992. https://www.x-mol.com/paperRedirect/4011186

  139. Ashokkumar P, Weiboff H, Kraus W, Rurack K (2014) Test-stripbased fluorometric detection of fluoride in aqueous media with a BODIPY-linked hydrogen-bonding receptor. Angew Chem Int Ed 53:2225–2229. https://doi.org/10.1002/anie.201307848

    Article  CAS  Google Scholar 

  140. Zhang P, Li C, Zhang H, Li Y, Yu X, Geng L et al (2015) Fluorogenic and chromogenic detection of biologically important fluoride anion in aqueous media with a fluorescein-linked hydrogen-bonding receptor via “off–on” approach. J Incl Phenom Macrocycl Chem 81:295–300. https://doi.org/10.1007/s10847-014-0456-9

    Article  CAS  Google Scholar 

  141. Kim HY, Im HG, Chang S (2015) Colorimetric and fluorogenic signaling of fluoride ions by thiophosphinated dichlorofluorescein. Dyes Pigm 112:170–175. https://doi.org/10.1016/j.dyepig.2014.06.030

    Article  CAS  Google Scholar 

  142. Jiao S, Wang X, Sun Y, Zhang L, Sun W, Sun Y, Wang X, Ma P, Song D (2018) A novel fluorescein-coumarin-based fluorescent probe for fluoride ions and its applications in imaging of living cells and zebrafish in vivo. Sens Actuators B 262:188–194. https://doi.org/10.1016/j.snb.2018.01.186

    Article  CAS  Google Scholar 

  143. Gungor N, Knaapen AM, Munnia A, Peluso M, Haenen GR, Chiu RK, Godschalk RW, Schooten FJ (2010) Genotoxic effects of neutrophils and hypochlorous acid. Mutagenesis 25:149–154. https://doi.org/10.1093/mutage/gep053

    Article  CAS  PubMed  Google Scholar 

  144. Xu Q, Lee K-A, Lee S, Lee KM, Lee W-J, Yoon J (2013) A Highly Specific Fluorescent Probe for Hypochlorous Acid and Its Application in Imaging Microbe-Induced HOCl Production. J Am Chem Soc 135:9944–9949. https://doi.org/10.1021/ja404649m

    Article  CAS  PubMed  Google Scholar 

  145. Samanta S, Halder S, Manna U, Das G (2019) Specific detection of hypochlorite: a cyanine based turn-on fluorescent sensor. J Chem Sci 131:36. https://doi.org/10.1007/s12039-019-1612-y

    Article  CAS  Google Scholar 

  146. Taheri M, Mansour N (2019) Functionalized Silicon Nanoparticles as Fluorescent Probe for Detection of Hypochlorite in Water. J Photochem Photobiol A 382:111906. https://doi.org/10.1016/j.jphotochem.2019.111906

    Article  CAS  Google Scholar 

  147. Huo FJ, Zhang JJ, Yang YT, Chao JB, Yin CX, Zhang YB, Chen TG (2012) A fluorescein-based highly specific colorimetric and fluorescent probe for hypochlorites in aqueous solution and its application in tap water. Sens Actuators B 166:44–49. https://doi.org/10.1016/j.snb.2011.11.081

    Article  CAS  Google Scholar 

  148. Zhou Y, Li J-Y, Chu K-H, Liu K, Yao C, Li J-Y (2012) Fluorescence turn-on detection of hypochlorous acid via HOCl-promoted dihydrofluorescein-ether oxidation and its application in vivo. Chem Commun 48:4677–4679. https://doi.org/10.1039/C2CC30265A

    Article  CAS  Google Scholar 

  149. Jin X, Hao L, Hu Y, She M, Shi Y, Obst M, Li J, Shi Z (2013) Two novel fluorescein-based fluorescent probes for hypochlorite and its real applications in tap water and biological imaging. Sens Actuators B 186:56–60. https://doi.org/10.1016/j.snb.2013.05.079

    Article  CAS  Google Scholar 

  150. Cheng X, Jia H, Long T, Feng J, Qin J, Li Z (2011) A ‘“turn-on”’ fluorescent probe for hypochlorous acid: convenient synthesis, good sensing performance, and a new design strategy by the removal of CQN isomerization. Chem Commun 47:11978–11980. https://doi.org/10.1039/C1CC15214A

    Article  CAS  Google Scholar 

  151. Lie J, Yang X, Zhang D, Liu Y, Tang J, Li Y, Zhao Y, Ye Y A fluorescein-based “turn-on” fluorescence probe for hypochlorous acid detection and its application in cell imaging. Sens.Actuators B,265:85–90, https://doi.org/10.1016/j.snb.2018.03.027

  152. Lv J, Wang F, Wei T, Chen X (2017) Highly Sensitive and Selective Fluorescent Probes for the Detection of HOCl/OCl− Based on Fluorescein Derivatives. Ind Eng Chem Res 56:3757–3764. https://doi.org/10.1021/acs.iecr.7b00381

    Article  CAS  Google Scholar 

  153. Wang N, Xu W, Song D, Ma P (2019) A fluorescein-carbazole-based fluorescent probe for imaging of endogenous hypochlorite in living cells and zebrafish. Spectrochim Acta A Mol Biomol Spectrosc 227:117692. https://doi.org/10.1016/j.saa.2019.117692

  154. Jin L, Xu M, Jiang H, Wang W, Wang Q (2018) A Simple Fluorescein Derived Colorimetric and Fluorescent ‘off - on’ Sensor for the Detection of Hypochlorite. Anal Methods 10:4562–4569. https://doi.org/10.1039/C8AY01489B

    Article  CAS  Google Scholar 

  155. Prakash M, Shetty MS, Tilak P, Anwar N (2009) Total Thiols: Biomedical Importance and Their Alteration In Various Disorders. Online J Health Allied Sc 8:2,. http://www.ojhas.org/issue30/2009-2-2.htm

  156. Ulrich K, Jakob U (2019) The role of thiols in antioxidant systems. Free Radic Biol Med 140:14–27. https://doi.org/10.1016/j.freeradbiomed.2019.05.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cazzola M, Calzetta L, Page C, Rogliani P, Matera MG (2019) Thiol-Based Drugs in Pulmonary Medicine: Much More than Mucolytics. Trends Pharmacol Sci 40:452–463. https://doi.org/10.1016/j.tips.2019.04.015

    Article  CAS  Google Scholar 

  158. Marabini L, Rossella C, Pier CB (2011) Protective effect of erdosteine metabolite I against hydrogen peroxide-induced oxidative DNA-damage in lung epithelial cells. Arzneimittelforschung 61:700–706. https://doi.org/10.1055/s-0031-1300590

    Article  CAS  PubMed  Google Scholar 

  159. Baba SP, Bhatnagar A (2018) Role of thiols in oxidative stress. Current Opinion in Toxicol 7:133–139. https://doi.org/10.1016/j.cotox.2018.03.005

    Article  Google Scholar 

  160. Checconi P, Limongi D, Baldelli S, Ciriolo MR, Nencioni L, Palamara AT (2019) Role of Glutathionylation in Infection and Inflammation. Nutrients 11:1952. https://doi.org/10.3390/nu11081952

    Article  CAS  PubMed Central  Google Scholar 

  161. Barbosa ML, de Meneses A-APM, de Aguiar RPS, de Castro e Sousa JM, de Carvalho Melo Cavalcante AA, Maluf SW, (2020) Oxidative stress, antioxidant defense and depressive disorders: A systematic review of biochemical and molecular markers. J neurol psychiatry brain res 36:65–72. https://doi.org/10.1016/j.npbr.2020.02.006

    Article  Google Scholar 

  162. Atkuri KR, Mantovani JJ, Herzenberg LA (2007) N-Acetylcysteine-a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol 7:355–359. https://doi.org/10.1016/j.coph.2007.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Paul BD, Sbodio JI, Xu RS, Vandiver MS, Cha JY, Snowman AM, Snyder SH (2014) Cystathionine gamma-lyase deficiency mediates neurodegeneration in Huntington’s disease. Nature 509:96–100. https://doi.org/10.1038/nature13136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Paul BD, Snyder SH (2014) Neurodegeneration in Huntington’s disease involves loss of cystathionine γ-lyase. Cell Cycle 13:2491–2493. https://doi.org/10.4161/15384101.2014.950538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. D P, Saini S, Thakur A, Kumar B, Tyagi S, Nayak MK, (2017) A “Turn-On” thiol functionalized fluorescent carbon quantum dot based chemosensory system for arsenite detection. J Hazard Mater 328:117–126. https://doi.org/10.1016/j.jhazmat.2017.01.015

    Article  CAS  Google Scholar 

  166. Sedgwick AC, Gardiner JE, Kim G, Yevglevskis M, Lloyd MD, Jenkins ATA, James TD (2018) Long-wavelength TCF-based fluorescence probes for the detection and intracellular imaging of biological thiols. Chem Commun 54:4786–4789. https://doi.org/10.1039/C8CC01661E

    Article  CAS  Google Scholar 

  167. Wang H, Zhou G, Chen X (2013) An iminofluorescein-Cu2+ ensemble probe for selective detection of thiols. Sens Actuators B Chem 176:698–703. https://doi.org/10.1016/j.snb.2012.10.006

    Article  CAS  Google Scholar 

  168. Huo F, Kang J, Yin C, Zhang Y, Chao J (2015) A turn-on green fluorescent thiol probe based on the 1,2-addition reaction and its application for bioimaging. Sens Actuators B Chem 207:139–143. https://doi.org/10.1016/j.snb.2014.10.023

    Article  CAS  Google Scholar 

  169. Liu Y, Xiang K, Tian B, Zhang J (2016) A fluorescein-based fluorescence probe for the fast detection of thiol. Tetrahedron Lett 57:2478–2483. https://doi.org/10.1016/j.tetlet.2016.04.068

    Article  CAS  Google Scholar 

  170. Chen H, Tang Y, Lin W (2016) Recent progress in the fluorescent probes for the specific imaging of small molecular weight thiols in living cells. Trends Analyt Chem 76:166–181. https://doi.org/10.1016/j.trac.2015.11.014

    Article  CAS  Google Scholar 

  171. Tian M, Guo F, Sun Y, Zhang W, Miao F, Liu Y et al (2014)A fluorescent probe for intracellular cysteine overcoming the interference by glutathione. Org Biomol Chem 2:6128–6133. https://doi.org/10.1039/C4OB00382A

  172. Manna S, Karmakar P, Ali SS, Guria UN, Sarkar R, Datta P, Mahapatra AK (2018) A Michael addition–cyclization-based switch-on fluorescent chemodosimeter for cysteine and its application in live cell imaging. New J Chem 42:4951–4958. https://doi.org/10.1039/C8NJ00465J

    Article  CAS  Google Scholar 

  173. Murale DP, Kim H, Choi WS, Kim Y, Churchill DG (2014) Extremely selective fluorescence detection of cysteine or superoxide with aliphatic ester hydrolysis. RSC Adv 4:46513–46516. https://doi.org/10.1039/C4RA06891B

    Article  CAS  Google Scholar 

  174. Liu J, Sun YQ, Zhang H, Huo Y, Shi Y, Shi H et al (2014) A carboxylic acid functionalized coumarinhemicyanine fluorescent dye and its application to construct a fluorescent probe for selective detection of cysteine over homocysteine and glutathione. RSC Adv 4:464542–464550. https://doi.org/10.1039/C4RA10865E

    Article  CAS  Google Scholar 

  175. Kand D, Saha T, Talukdar P (2014) Off-on type fluorescent NBD-probe for selective sensing of cysteine and homocysteine over glutathione. Sens Actuators B Chem 196:440–449. https://doi.org/10.1016/j.snb.2014.02.023

    Article  CAS  Google Scholar 

  176. Yang X, Guo Y, Strongin RM (2011) Conjugate addition/cyclization sequence enables selective and simultaneous fluorescence detection of cysteine and homocysteine. Angew Chem Int Ed 50:10690–10693. https://doi.org/10.1002/ange.201103759

    Article  CAS  Google Scholar 

  177. Wang H, Zhou G, Gai H, Chen X (2012) A fluorescein-based probe with high selectivity to cysteine over homocysteine and glutathione. Chem Commun 48:8341. https://doi.org/10.1039/C2CC33932C

    Article  CAS  Google Scholar 

  178. Yang X, Guo Y, Strongin RM (2012) A seminaphthofluorescein-based fluorescent chemodosimeter for the highly selective detection of cysteine. Org Biomol Chem 10:2739–2741. https://doi.org/10.1039/C2OB25178G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ji Y, Dai F, & Zhou B (2019). Developing a julolidine-fluorescein-based hybrid as a highly sensitive fluorescent probe for sensing and bioimaging cysteine in living cells. Talanta 197:631–637 https://www.x-mol.com/paperRedirect/973897

  180. Staudinger C, Breininger J, Klimant I, Borisov SM (2019) Near-infrared fluorescent aza-BODIPY dyes for sensing and imaging of pH from neutral to highly alkaline range. Analyst 144:2393–2402. https://doi.org/10.1039/C9AN00118B

    Article  CAS  PubMed  Google Scholar 

  181. Escobedo JO, Rusin O, Lim S, Strongin RM (2010) NIR dyes for bioimaging applications. Curr Opin Chem Biol 14:64–70. https://doi.org/10.1016/j.cbpa.2009.10.022

    Article  CAS  PubMed  Google Scholar 

  182. Wang J, Zhou C, Liu W, Zhang J, Zhu X, Liu X, Wang Q, Zhang H (2016) A near-infrared fluorescent probe based on chloroacetate modified naphthofluorescein for selectively detecting cysteine/homocysteine and its application in living cells. Photochem Photobiol Sci 15:1393–1399. https://doi.org/10.1039/C6PP00219F

    Article  CAS  PubMed  Google Scholar 

  183. Chen H, Zhou B, Ye R, Zhu J, Bao X (2017) Synthesis and evaluation of a new fluorescein and rhodamine B-based chemosensor for highly sensitive and selective detection of cysteine over other amino acids and its application in living cell imaging. Sens Actuators B Chem 251:481–489. https://doi.org/10.1016/j.snb.2017.05.078

    Article  CAS  Google Scholar 

  184. Fu Z, Han X, Shao Y, Fang J, Zhang Z, Wang Y, Peng Y (2017) Fluorescein-based Chromogenic and Ratiometric Fluorescence Probe for Highly Selective Detection of Cysteine and Its Application in Bioimaging. Anal Chem 89:1937–1944. https://doi.org/10.1021/acs.analchem.6b04431

    Article  CAS  PubMed  Google Scholar 

  185. Scales S, Tsai SP, Zacharias N, Cruz-Chuh J, dela, Bullen G, Velasquez E, … Sadowsky J, (2019) Development of a cysteine-conjugatable disulfide FRET probe: Influence of Charge on Linker Cleavage and Payload Trafficking for an anti-HER2 antibody conjugate. Bioconjugate Chem 30:3046–3056. https://doi.org/10.1021/acs.bioconjchem.9b00678

    Article  CAS  Google Scholar 

  186. Hou X, Li Z, Li B, Liu C, Xu Z (2018) An “off-on” fluorescein-based colormetric and fluorescent probe for the detection of glutathione and cysteine over homocysteine and its application for cell imaging. Sens Actuators B Chem 260:295–302. https://doi.org/10.1016/j.snb.2018.01.013

    Article  CAS  Google Scholar 

  187. Hou X, Li Z, Wang Y, Li B, Liu C, Zhan Q, Liu G, Wei D, Xu Z (2020) Development of a semiacenaphthenofluorescein-based optical and fluorescent sensor for imaging cysteine in cells. J Photochem Photobiol A Chem 386:112090. https://doi.org/10.1016/j.jphotochem.2019.112090

    Article  CAS  Google Scholar 

  188. Heinemann SH, Hoshi T, Westerhausen M, Schiller A (2014) Carbon monoxide – physiology, detection and controlled release. Chem Commun 50(28):3644–3660. https://doi.org/10.1039/C3CC49196J

    Article  CAS  Google Scholar 

  189. Romão CC, Blättler WA, Seixas JD, Bernardes GJL (2012) Developing drug molecules for therapy with carbon monoxide. Chem Soc Rev 41:3571. https://doi.org/10.1039/C2CS15317C

    Article  PubMed  Google Scholar 

  190. Pal S, Mukherjee M, Sen B, Mandal SK, Lohar S, Chattopadhyay P, Dhara K (2015) A new fluorogenic probe for the selective detection of carbon monoxide in aqueous medium based on Pd(0) mediated reaction. Chem Commun 51:4410–4413. https://doi.org/10.1039/C5CC00902B

    Article  CAS  Google Scholar 

  191. Zobi F (2013) CO and CO-releasing molecules in medicinal chemistry. Future Med Chem 5:175–188. https://doi.org/10.4155/fmc.12.196

    Article  CAS  PubMed  Google Scholar 

  192. Feng W, Liu D, Feng S, Feng G (2016) Readily Available Fluorescent Probe for Carbon Monoxide Imaging in Living Cells. Anal Chem 88:10648–10653. https://doi.org/10.1021/acs.analchem.6b03073

    Article  CAS  PubMed  Google Scholar 

  193. Feng S, Liu D, Feng W, Feng G (2017) Allyl Fluorescein Ethers as Promising Fluorescent Probes for Carbon Monoxide Imaging in Living Cells. Anal Chem 89:3754–3760. https://doi.org/10.1021/acs.analchem.7b00135

    Article  CAS  PubMed  Google Scholar 

  194. Jimenez M (2010) Hydrogen sulfide as a signaling molecule in the enteric nervous system. Neurogastroenterol Motil 22:1149–1153. https://doi.org/10.1111/j.1365-2982.2010.01600.x

    Article  CAS  PubMed  Google Scholar 

  195. Olas B (2015) Hydrogen sulfide in signaling pathways. Clin Chim Acta 439:212–218. https://doi.org/10.1016/j.cca.2014.10.037

    Article  CAS  PubMed  Google Scholar 

  196. di Masi A, Ascenzi P (2012) H2S: A “Double face” molecule in health and disease. BioFactors 39:186–196. https://doi.org/10.1002/biof.1061

    Article  CAS  PubMed  Google Scholar 

  197. Guidotti TL (2010) Hydrogen Sulfide: advances in understanding human toxicity. Int J Toxicol 29:569–581. https://doi.org/10.1177/1091581810384882

    Article  CAS  PubMed  Google Scholar 

  198. Austigard ÅD, Svendsen K, Heldal KK (2018) Hydrogen sulphide exposure in waste water treatment. J Occup Med Toxicol 13:10. https://doi.org/10.1186/s12995-018-0191-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Ventura Spagnolo E, Romano G, Zuccarello P, Laudani A, Mondello C, Argo A, Barbera N (2019) Toxicological Investigations in a Fatal and Non-Fatal Accident due to Hydrogen Sulphide (H2S) Poisoning. Forensic Sci Int 300:e4–e8. https://doi.org/10.1016/j.forsciint.2019.04.026

    Article  CAS  PubMed  Google Scholar 

  200. Whiteman M, Winyard PG (2011) Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Expert Rev Clin Pharmacol 4:13–32. https://doi.org/10.1586/ecp.10.134

    Article  CAS  PubMed  Google Scholar 

  201. Lin VS, Chang CJ (2012) Fluorescent probes for sensing and imaging biological hydrogen sulfide. Curr Opin Chem Biol 16:595–601. https://doi.org/10.1016/j.cbpa.2012.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Kaushik R, Ghosh A, Jose A (2021) Chapter 12 - Colorimetric and fluorescent nanosensors for the detection of gaseous signaling molecule hydrogen sulfide (H2S) Handbook of Nanomaterials for Sensing Applications 203–220. https://doi.org/10.1016/B978-0-12-820783-3.00008-7

  203. Guria UN, Maiti K, Ali SS, Samanta SK, Mandal D, Sarkar R, Mahapatra AK (2018) Reaction-based bi-signaling chemodosimeter probe for selective detection of hydrogen sulfide and cellular studies. New J Chem 42:5367–5375. https://doi.org/10.1039/C7NJ04632D

    Article  CAS  Google Scholar 

  204. Hou F, Huang L, Xi P, Cheng J, Zhao X, Xie G, Shi Y, Cheng F, Yia X, Bai D, Zeng Z (2012) A Retrievable and Highly Selective Fluorescent Probe for Monitoring Sulfide and Imaging in Living Cells. Inorg Chem 51:2454–2460. https://doi.org/10.1021/ic2024082

    Article  CAS  PubMed  Google Scholar 

  205. Liu H, Zhao M, Qiao Q, Lang H, Xu J, Xu Z (2014) Fluorescein-derived fluorescent probe for cellular 4 hydrogen sulfide imaging. Chin Chem Lett 25:1060–1064. https://doi.org/10.1016/j.cclet.2014.05.010

    Article  CAS  Google Scholar 

  206. Jin X, Wu S, She M, Jia Y, Hao L, Yin B, Wang L, Obst M, Shen Y, ZhangY LJ (2016) A novel fluorescein-based fluorescent probe for detecting H2S and its real applications in blood plasma and biological imaging. Anal Chem 88:11253–11260. https://doi.org/10.1021/acs.analchem.6b04087

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Keerthana S Lieterature data collection; Bincy Sam: Interpretation and writing; Suhakar YN: Critical analysis; Louis George: Reviewing and Editing; Anitha Varghese: Reviewing and Editing.

Corresponding author

Correspondence to Anitha Varghese.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

S, K., Sam, B., George, L. et al. Fluorescein Based Fluorescence Sensors for the Selective Sensing of Various Analytes. J Fluoresc 31, 1251–1276 (2021). https://doi.org/10.1007/s10895-021-02770-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02770-9

Keywords

Navigation