Skip to main content
Log in

Refolding of Hemoglobin Under Macromolecular Confinement: Impersonating In Vivo Volume Exclusion

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Biomacromolecules evolve and function inside the cell under crowded conditions. The effect of macromolecular crowding and confinement on nature and interactions of biomacromolecules cannot be ruled out. This study demonstrates the effect of volume exclusion due to macromolecular crowding on refolding rate of Gn-HCl induced unfolded hemoglobin. The in vivo like crowding milieu was created using dextran 70. Unfolding of Hb was followed by the absorbance at 280 nm and intrinsic fluorescence intensity along with a bathochromic shift that shows the destabilization of Hb in the presence of the denaturing agent. This was supported by a decrease in soret absorbance, increased hydrodynamic radii and loss in secondary structure, evidenced from dynamic light scattering and circular dichroism experiments respectively. Refolding process of Hb was followed by an increase in soret absorbance, decrease in intrinsic fluorescence intensity with a hypsochromic shift, decreased hydrodynamic radii and gain in secondary structural content. The results revealed that the effect of confinement and volume exclusion is insignificant on the process of Hb refolding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Siddiqui GA, Naeem A (2020) The contrasting effect of macromolecular crowding and confinement on fibril formation of globular protein: Underlying cause of proteopathies. J Mol Liq 322:114602

    Article  Google Scholar 

  2. Fazili AN, Siddiqui AG, Bhat AS, et al (2015) Rifampicin induced aggregation of ovalbumin: malicious behaviour of antibiotics. Protein Pept Lett 22:644–653

    Article  CAS  Google Scholar 

  3. Uversky VN, Karnoup AS, Segel DJ et al (1998) Anion-induced folding of Staphylococcal nuclease: characterization of multiple equilibrium partially folded intermediates. J Mol Biol 278:879–894

    Article  CAS  Google Scholar 

  4. Muzammil S, Kumar Y, Tayyab S (2000) Anion-induced stabilization of human serum albumin prevents the formation of intermediate during urea denaturation. Proteins Struct Funct Bioinforma 40:29–38

    Article  CAS  Google Scholar 

  5. Fink AL, Oberg KA, Seshadri S (1998) Discrete intermediates versus molten globule models for protein folding: characterization of partially folded intermediates of apomyoglobin. Fold Des 3:19–25

    Article  CAS  Google Scholar 

  6. Ahmad B, Ahmed MZ, Haq SK, Khan RH (2005) Guanidine hydrochloride denaturation of human serum albumin originates by local unfolding of some stable loops in domain III. Biochim Biophys Acta (BBA) Proteins Proteomics 1750:93–102

    Article  CAS  Google Scholar 

  7. Mirdha L, Chakraborty H (2020) Fluorescence quenching by ionic liquid as a potent tool to study protein unfolding intermediates. J Mol Liq 312:113408

  8. Zhou H-X, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397

    Article  CAS  Google Scholar 

  9. Gnutt D, Ebbinghaus S (2016) The macromolecular crowding effect–from in vitro into the cell. Biol Chem 397:37–44

    Article  CAS  Google Scholar 

  10. Silverstein TP, Slade K (2019) Effects of macromolecular crowding on biochemical systems. J Chem Educ 96:2476–2487

    Article  CAS  Google Scholar 

  11. Minton AP, Wilf J (1981) Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 20:4821–4826

    Article  CAS  Google Scholar 

  12. Bhakuni K, Venkatesu P (2019) Does macromolecular crowding compatible with enzyme stem bromelain structure and stability? Int J Biol Macromol 131:527–535

    Article  CAS  Google Scholar 

  13. Rajapaksha A, Stanley CB, Todd BA (2015) Effects of macromolecular crowding on the structure of a protein complex: a small-angle scattering study of superoxide dismutase. Biophys J 108:967–974

    Article  CAS  Google Scholar 

  14. Fan Y-Q, Liu H-J, Li C et al (2012) Effects of macromolecular crowding on refolding of recombinant human brain-type creatine kinase. Int J Biol Macromol 51:113–118

    Article  CAS  Google Scholar 

  15. Stagg L, Christiansen A, Wittung-Stafshede P (2011) Macromolecular crowding tunes folding landscape of parallel α/β protein, apoflavodoxin. J Am Chem Soc 133:646–648

    Article  CAS  Google Scholar 

  16. Cook EC, Creamer TP (2016) Calcineurin in a crowded world. Biochemistry 55:3092–3101

    Article  CAS  Google Scholar 

  17. Li J, Zheng H, Feng C (2019) Effect of macromolecular crowding on the FMN–Heme intraprotein electron transfer in inducible NO synthase. Biochemistry 58:3087–3096

    Article  CAS  Google Scholar 

  18. Beg I, Minton AP, Islam A et al (2018) Comparison of the thermal stabilization of proteins by oligosaccharides and monosaccharide mixtures: Measurement and analysis in the context of excluded volume theory. Biophys Chem 237:31–37

    Article  CAS  Google Scholar 

  19. Siddiqui GA, Naeem A (2018) Aggregation of globular protein as a consequences of macromolecular crowding: A time and concentration dependent study. Int J Biol Macromol 108:360–366. https://doi.org/10.1016/j.ijbiomac.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  20. Li X, Zheng W, Zhang L et al (2009) Effective electrochemical method for investigation of hemoglobin unfolding based on the redox property of heme groups at glassy carbon electrodes. Anal Chem 81:8557–8563

    Article  CAS  Google Scholar 

  21. Zhang G, Chen X, Guo J, Wang J (2009) Spectroscopic investigation of the interaction between chrysin and bovine serum albumin. J Mol Struct 921:346–351

    Article  CAS  Google Scholar 

  22. Chi Z, Zhao J, You H, Wang M (2016) Study on the mechanism of interaction between phthalate acid esters and bovine hemoglobin. J Agric Food Chem 64:6035–6041

    Article  CAS  Google Scholar 

  23. Yan Y-B, Wang Q, He H-W, Zhou H-M (2004) Protein thermal aggregation involves distinct regions: sequential events in the heat-induced unfolding and aggregation of hemoglobin. Biophys J 86:1682–1690

    Article  CAS  Google Scholar 

  24. Kristinsson HG (2002) Acid-induced unfolding of flounder hemoglobin: evidence for a molten globular state with enhanced pro-oxidative activity. J Agric Food Chem 50:7669–7676

    Article  CAS  Google Scholar 

  25. Mai Z, Zhao X, Dai Z, Zou X (2010) Contributions of components in guanidine hydrochloride to hemoglobin unfolding investigated by protein film electrochemistry. J Phys Chem B 114:7090–7097

    Article  CAS  Google Scholar 

  26. Yamaguchi S, Yamamoto E, Mannen T et al (2013) Protein refolding using chemical refolding additives. Biotechnol J 8:17–31

    Article  CAS  Google Scholar 

  27. Mach H, Volkin DB, Burke CJ, Middaugh CR (1995) Ultraviolet absorption spectroscopy. Protein Stab Fold 91–114

  28. Street TO, Courtemanche N, Barrick D (2008) Protein folding and stability using denaturants. Methods Cell Biol 84:295–325

    Article  CAS  Google Scholar 

  29. Togashi DM, Ryder AG, O’Shaughnessy D (2010) Monitoring local unfolding of bovine serum albumin during denaturation using steady-state and time-resolved fluorescence spectroscopy. J Fluoresc 20:441–452

    Article  CAS  Google Scholar 

  30. Chen Y, Barkley MD (1998) Toward understanding tryptophan fluorescence in proteins. Biochemistry 37:9976–9982

    Article  CAS  Google Scholar 

  31. Qiu W, Li T, Zhang L et al (2008) Ultrafast quenching of tryptophan fluorescence in proteins: Interresidue and intrahelical electron transfer. Chem Phys 350:154–164

    Article  CAS  Google Scholar 

  32. Andrade SM, Costa SMB (2000) The location of tryptophan, N-acetyltryptophan and α‐chymotrypsin in reverse micelles of AOT: a fluorescence study¶. Photochem Photobiol 72:444–450

    Article  CAS  Google Scholar 

  33. TAKE T (1961) On the dissociation of hemoglobin under the action of urea. J Biochem 49:206–210

    Article  Google Scholar 

  34. Boys BL, Konermann L (2007) Folding and assembly of hemoglobin monitored by electrospray mass spectrometry using an on-line dialysis system. J Am Soc Mass Spectrom 18:8–16

    Article  CAS  Google Scholar 

  35. Bhattacharya J, GhoshMoulick R, Choudhuri U et al (2004) Unfolding of hemoglobin variants—insights from urea gradient gel electrophoresis photon correlation spectroscopy and zeta potential measurements. Anal Chim Acta 522:207–214

    Article  CAS  Google Scholar 

  36. Carvalho JWP, Santiago PS, Batista T et al (2012) On the temperature stability of extracellular hemoglobin of Glossoscolex paulistus, at different oxidation states: SAXS and DLS studies. Biophys Chem 163:44–55

    Article  Google Scholar 

  37. Iram A, Alam T, Khan JM et al (2013) Molten globule of hemoglobin proceeds into aggregates and advanced glycated end products. PLoS One 8:e72075

    Article  CAS  Google Scholar 

  38. Iram A, Naeem A (2013) Detection and analysis of protofibrils and fibrils of hemoglobin: implications for the pathogenesis and cure of heme loss related maladies. Arch Biochem Biophys 533:69–78

    Article  CAS  Google Scholar 

  39. Siddiqui GA, Siddiqi MK, Khan RH, Naeem A (2018) Probing the binding of phenolic aldehyde vanillin with bovine serum albumin: Evidence from spectroscopic and docking approach. Spectrochim Acta Part A Mol Biomol Spectrosc 203:40–47

    Article  CAS  Google Scholar 

  40. Christiansen A, Wang Q, Cheung MS and Wittung-Stafshede P (2013) Effects of macromolecular crowding agents on protein folding in vitro and in silico. Biophys Rev 5(2):137–145

  41. Li J, Zhang S, Wang CC (2001) Effects of macromolecular crowding on the refolding of glucose-6-phosphate dehydrogenase and protein disulfide isomerase. J Biol Chem 276:34396–34401. https://doi.org/10.1074/jbc.M103392200

    Article  CAS  PubMed  Google Scholar 

  42. Zhou HX (2008) Effect of mixed macromolecular crowding agents on protein folding. Proteins Struct Funct Genet 72:1109–1113. https://doi.org/10.1002/prot.22111

    Article  CAS  PubMed  Google Scholar 

  43. Qu Y, Bolen DW (2002) Efficacy of macromolecular crowding in forcing proteins to fold. Biophys Chem 101–102:155–165. https://doi.org/10.1016/S0301-4622(02)00148-5

    Article  PubMed  Google Scholar 

  44. Mukherjee S, Waegele MM, Chowdhury P et al (2009) Effect of macromolecular crowding on protein folding dynamics at the secondary structure level. J Mol Biol 393:227–236. https://doi.org/10.1016/j.jmb.2009.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheung MS, Klimov D, Thirumalai D (2005) Molecular crowding enhances native state stability and refolding rates of globular proteins. Proc Natl Acad Sci U S A 102:4753–4758. https://doi.org/10.1073/pnas.0409630102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Perham M, Stagg L, Wittung-Stafshede P (2007) Macromolecular crowding increases structural content of folded proteins. FEBS Lett 581:5065–5069. https://doi.org/10.1016/j.febslet.2007.09.049

    Article  CAS  PubMed  Google Scholar 

  47. Zhou BR, Liang Y, Du F et al (2004) Mixed macromolecular crowding accelerates the oxidative refolding of reduced, denatured lysozyme: Implications for protein folding in intracellular environments. J Biol Chem 279:55109–55116. https://doi.org/10.1074/jbc.M409086200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful for the facilities obtained at Department of Biochemistry, AMU Aligarh.

Author information

Authors and Affiliations

Authors

Contributions

Experimental work done and Manuscript written by Gufran Ahmed Siddiqui, Manuscript checked and supervised by Dr Aabgeena Naeem.

Corresponding author

Correspondence to Aabgeena Naeem.

Ethics declarations

Conflict of Interest

The authors declared that there is no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqui, G.A., Naeem, A. Refolding of Hemoglobin Under Macromolecular Confinement: Impersonating In Vivo Volume Exclusion. J Fluoresc 31, 1371–1377 (2021). https://doi.org/10.1007/s10895-021-02751-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02751-y

Keywords

Navigation