Skip to main content
Log in

Florescence Imaging Lung Cancer with a Small Molecule MHI-148

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

MHI-148 is a type of heptamethine cyanine dye that can cross the cytoplasmic membrane of lung cancer cells. Here we tested the cytotoxic, in vivo imaging of MHI-148 in lung-cancer nude mice model. Ex vivo imaging was also been measured by testing the major tissue fluorescence intensity. And, the small molecular compound MHI-148 had low cytotoxicity which could be visualized at 1 h post-injection in tumor. From ex vivo fluorescence imaging, the tumor showed the highest uptake of MHI-148 among all the selected organs expect for the time point of 2 h. MHI-148 could be used for effective imaging in lung cancer tissue with good stability and specificity, which suggested that MHI-148 could be an effective tumor clinical imaging agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sun KX, Zheng RS, Zeng HM, Zhang SW, Zou XN, Gu XY, Xia CF, Yang ZX, Li H, Chen WQ, He J (2018) The incidence and mortality of lung cancer in China, 2014. Zhonghua Zhong Liu Za Zhi 40(11):805–811

    CAS  Google Scholar 

  2. Liu S, Chen Q, Guo L, Cao X, Sun X, Chen W, He J (2018) Incidence and mortality of lung cancer in China, 2008-2012. Chin J Cancer Res 30(6):580–587

    Google Scholar 

  3. van der Meel R, Gallagher WM, Oliveira S, O'Connor AE, Schiffelers RM, Byrne AT (2010) Recent advances in molecular imaging biomarkers in cancer: application of bench to bedside technologies. Drug Discov Today 15(3–4):102–114

    Google Scholar 

  4. Kaur S, Venktaraman G, Jain M, Senapati S, Garg PK, Batra SK (2012) Recent trends in antibody-based oncologic imaging. Cancer Lett 315(2):97–111

    CAS  Google Scholar 

  5. Park H, Sholl LM, Hatabu H, Awad MM, Nishino M (2019) Imaging of precision therapy for lung Cancer: current state of the art. Radiology 293(1):15–29

    PubMed Central  Google Scholar 

  6. Xiao L, Zhang Y, Yue W, Xie X, Wang JP, Chordia MD, Chung LW, Pan D (2013) Heptamethine cyanine based (64)Cu-PET probe PC-1001 for cancer imaging: synthesis and in vivo evaluation. Nucl Med Biol 40(3):351–360

    CAS  Google Scholar 

  7. Fass L (2008) Imaging and cancer: a review. Mol Oncol 2(2):115–152

    Google Scholar 

  8. Rao J, Dragulescu-Andrasi A, Yao H (2007) Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 18(1):17–25

    CAS  Google Scholar 

  9. Hilderbrand SA, Weissleder R (2010) Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol 14(1):71–79

    CAS  Google Scholar 

  10. Yi X, Wang F, Qin W, Yang X, Yuan J (2014) Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field. Int J Nanomedicine 9:1347–1365

    Google Scholar 

  11. Tan X, Luo S, Wang D, Su Y, Cheng T, Shi C (2012) A NIR heptamethine dye with intrinsic cancer targeting, imaging and photosensitizing properties. Biomaterials 33(7):2230–2239

    CAS  Google Scholar 

  12. Nguyen QT, Tsien RY (2013) Fluorescence-guided surgery with live molecular navigation--a new cutting edge. Nat Rev Cancer 13(9):653–662

    CAS  Google Scholar 

  13. Owens SL (1996) Indocyanine green angiography. Br J Ophthalmol 80(3):263–266

    CAS  Google Scholar 

  14. East JM, Valentine CS, Kanchev E, Blake GO (2009) Sentinel lymph node biopsy for breast cancer using methylene blue dye manifests a short learning curve among experienced surgeons: a prospective tabular cumulative sum (CUSUM) analysis. BMC Surg 9:2

    Google Scholar 

  15. Kiesslich R, Fritsch J, Holtmann M, Koehler HH, Stolte M, Kanzler S, Nafe B, Jung M, Galle PR, Neurath MF (2003) Methylene blue-aided chromoendoscopy for the detection of intraepithelial neoplasia and colon cancer in ulcerative colitis. Gastroenterology 124(4):880–888

    Google Scholar 

  16. Lee S, George Thomas R, Ju Moon M, Ju Park H, Park IK, Lee BI, Yeon Jeong Y (2017) Near-infrared Heptamethine cyanine based Iron oxide nanoparticles for tumor targeted multimodal imaging and Photothermal therapy. Sci Rep 7(1):2108

    Google Scholar 

  17. Yang X, Shi C, Tong R, Qian W, Zhau HE, Wang R, Zhu G, Cheng J, Yang VW, Cheng T, Henary M, Strekowski L, Chung LW (2010) Near IR heptamethine cyanine dye-mediated cancer imaging. Clin Cancer Res 16(10):2833–2844

    CAS  Google Scholar 

  18. Wu JB, Shao C, Li X, Shi C, Li Q, Hu P, Chen YT, Dou X, Sahu D, Li W, Harada H, Zhang Y, Wang R, Zhau HE, Chung LW (2014) Near-infrared fluorescence imaging of cancer mediated by tumor hypoxia and HIF1alpha/OATPs signaling axis. Biomaterials 35(28):8175–8185

    CAS  Google Scholar 

  19. Bertolino CA, Caputo G, Barolo C, Viscardi G, Coluccia S (2006) Novel heptamethine cyanine dyes with large Stoke's shift for biological applications in the near infrared. J Fluoresc 16(2):221–225

    Google Scholar 

  20. Kim RB (2003) Organic anion-transporting polypeptide (OATP) transporter family and drug disposition. Eur J Clin Investig 33(Suppl 2):1–5

    Google Scholar 

  21. Luo S, Zhang E, Su Y, Cheng T, Shi C (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32(29):7127–7138

    CAS  Google Scholar 

  22. Jaffer FA, Libby P, Weissleder R (2009) Optical and multimodality molecular imaging: insights into atherosclerosis. Arterioscler Thromb Vasc Biol 29(7):1017–1024

    CAS  Google Scholar 

  23. Ntziachristos V (2010) Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 7(8):603–614

    CAS  Google Scholar 

  24. Zhang X, Ding B, Qu C, Li H, Sun Y, Gai Y, Chen H, Fang H, Qian K, Zhang Y, Cheng Z, Lan X (2020) A thiopyrylium salt for PET/NIR-II tumor imaging and image-guided surgery. Mol Oncol 14(5):1089–1100

    CAS  Google Scholar 

  25. Stuker F, Ripoll J, Rudin M (2011) Fluorescence molecular tomography: principles and potential for pharmaceutical research. Pharmaceutics 3(2):229–274

    CAS  Google Scholar 

  26. Ma X, Phi Van V, Kimm MA, Prakash J, Kessler H, Kosanke K, Feuchtinger A, Aichler M, Gupta A, Rummeny EJ, Eisenblatter M, Siveke J, Walch AK, Braren R, Ntziachristos V, Wildgruber M (2017) Integrin-targeted hybrid fluorescence molecular tomography/X-ray computed tomography for imaging tumor progression and early response in non-small cell lung Cancer. Neoplasia 19(1):8–16

    Google Scholar 

  27. Rosenthal EL, Warram JM, de Boer E, Chung TK, Korb ML, Brandwein-Gensler M, Strong TV, Schmalbach CE, Morlandt AB, Agarwal G, Hartman YE, Carroll WR, Richman JS, Clemons LK, Nabell LM, Zinn KR (2015) Safety and tumor specificity of Cetuximab-IRDye800 for surgical navigation in head and neck Cancer. Clin Cancer Res 21(16):3658–3666

    CAS  Google Scholar 

  28. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, Group AL-GS (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7(5):392–401

    CAS  Google Scholar 

  29. Millesi M, Kiesel B, Woehrer A, Hainfellner JA, Novak K, Martinez-Moreno M, Wolfsberger S, Knosp E, Widhalm G (2014) Analysis of 5-aminolevulinic acid-induced fluorescence in 55 different spinal tumors. Neurosurg Focus 36(2):E11

    Google Scholar 

  30. Cao J, Zhu B, Zheng K, He S, Meng L, Song J, Yang H (2019) Recent Progress in NIR-II contrast agent for biological imaging. Front Bioeng Biotechnol 7:487

    Google Scholar 

  31. Zhang X, He S, Ding B, Qu C, Zhang Q, Chen H, Sun Y, Fang H, Long Y, Zhang R, Lan X, Cheng Z (2020) Cancer cell membrane-coated rare earth doped nanoparticles for tumor surgery navigation in NIR-II imaging window. Chem Eng J 385:123959

    Google Scholar 

  32. Escobedo JO, Rusin O, Lim S, Strongin RM (2010) NIR dyes for bioimaging applications. Curr Opin Chem Biol 14(1):64–70

    CAS  Google Scholar 

  33. Al Sarakbi W, Mokbel R, Salhab M, Jiang WG, Reed MJ, Mokbel K (2006) The role of STS and OATP-B mRNA expression in predicting the clinical outcome in human breast cancer. Anticancer Res 26(6C):4985–4990

    Google Scholar 

  34. Ballestero MR, Monte MJ, Briz O, Jimenez F, Gonzalez-San Martin F, Marin JJ (2006) Expression of transporters potentially involved in the targeting of cytostatic bile acid derivatives to colon cancer and polyps. Biochem Pharmacol 72(6):729–738

    CAS  Google Scholar 

  35. Marzolini C, Tirona RG, Kim RB (2004) Pharmacogenomics of the OATP and OAT families. Pharmacogenomics 5(3):273–282

    CAS  Google Scholar 

  36. Lee W, Belkhiri A, Lockhart AC, Merchant N, Glaeser H, Harris EI, Washington MK, Brunt EM, Zaika A, Kim RB, El-Rifai W (2008) Overexpression of OATP1B3 confers apoptotic resistance in colon cancer. Cancer Res 68(24):10315–10323

    CAS  Google Scholar 

  37. Muto M, Onogawa T, Suzuki T, Ishida T, Rikiyama T, Katayose Y, Ohuchi N, Sasano H, Abe T, Unno M (2007) Human liver-specific organic anion transporter-2 is a potent prognostic factor for human breast carcinoma. Cancer Sci 98(10):1570–1576

    CAS  Google Scholar 

  38. Monks NR, Liu S, Xu Y, Yu H, Bendelow AS, Moscow JA (2007) Potent cytotoxicity of the phosphatase inhibitor microcystin LR and microcystin analogues in OATP1B1- and OATP1B3-expressing HeLa cells. Mol Cancer Ther 6(2):587–598

    CAS  Google Scholar 

  39. Pressler H, Sissung TM, Venzon D, Price DK, Figg WD (2011) Expression of OATP family members in hormone-related cancers: potential markers of progression. PLoS One 6(5):e20372

    CAS  Google Scholar 

  40. Xiao L, Zhang Y, Liu Z, Yang M, Pu L, Pan D (2010) Synthesis of the cyanine 7 labeled neutrophil-specific agents for noninvasive near infrared fluorescence imaging. Bioorg Med Chem Lett 20(12):3515–3517

    CAS  Google Scholar 

  41. Marie S, Cisternino S, Buvat I, Decleves X, Tournier N (2017) Imaging probes and modalities for the study of solute carrier O (SLCO)-transport function in vivo. J Pharm Sci 106(9):2335–2344

    CAS  Google Scholar 

  42. Wu MR, Huang YY, Hsiao JK (2019) Use of Indocyanine green (ICG), a medical near infrared dye, for enhanced fluorescent imaging-comparison of organic anion transporting polypeptide 1B3 (OATP1B3) and sodium-Taurocholate Cotransporting polypeptide (NTCP) reporter genes. Molecules 24(12)

  43. Seki S, Kobayashi M, Itagaki S, Hirano T, Iseki K (2009) Contribution of organic anion transporting polypeptide OATP2B1 to amiodarone accumulation in lung epithelial cells. Biochim Biophys Acta 1788(5):911–917

    CAS  Google Scholar 

  44. Diagaradjane P, Orenstein-Cardona JM, Colon-Casasnovas NE, Deorukhkar A, Shentu S, Kuno N, Schwartz DL, Gelovani JG, Krishnan S (2008) Imaging epidermal growth factor receptor expression in vivo: pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe. Clin Cancer Res 14(3):731–741

    CAS  Google Scholar 

  45. Yang X, Shao C, Wang R, Chu CY, Hu P, Master V, Osunkoya AO, Kim HL, Zhau HE, Chung LWK (2013) Optical imaging of kidney cancer with novel near infrared heptamethine carbocyanine fluorescent dyes. J Urol 189(2):702–710

    CAS  Google Scholar 

  46. Cai W, Chen K, Li ZB, Gambhir SS, Chen X (2007) Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 48(11):1862–1870

    CAS  Google Scholar 

  47. Ding F, Zhan Y, Lu X, Sun Y (2018) Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging. Chem Sci 9(19):4370–4380

    CAS  Google Scholar 

  48. Zhang R, Xu Y, Zhang Y, Kim HS, Sharma A, Gao J, Yang G, Kim JS, Sun Y (2019) Rational design of a multifunctional molecular dye for dual-modal NIR-II/photoacoustic imaging and photothermal therapy. Chem Sci 10(36):8348–8353

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China [81801737], Fundamental research fund for the Chinese Central Universities of Huazhong University of Science and Technology (HUST) [2017KFYXJJ246] and Research foundation of Wuhan Union Hospital [02.03.2017-306].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Lan.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, X., Gai, Y., Feng, H. et al. Florescence Imaging Lung Cancer with a Small Molecule MHI-148. J Fluoresc 30, 1523–1530 (2020). https://doi.org/10.1007/s10895-020-02605-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02605-z

Keywords

Navigation