Skip to main content
Log in

Determination of Zinc Ion by a Quinoline-Based Fluorescence Chemosensor

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel fluorescence chemosensor XYQ for detecting Zn(II) was synthesized. XYQ showed fluorescence turn-on to Zn(II) with high sensitivity and selectivity in aqueous media among 19 metal ions. Its binding structure was demonstrated by ESI-MS, Job plot, and 1H NMR titration. The detection limit of XYQ to Zn(II) was 0.53 μM. It is much below WHO drinking water standard (76.0 μM). XYQ could be applied successfully to the test kit and real samples. The fluorescence turn-on process was possibly explained as a chelation-enhanced fluorescence (CHEF) effect with theoretical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li J, Yin C, Huo F (2016) Development of fluorescent zinc chemosensors based on various fluorophores and their applications in zinc recognition. Dyes Pigments 131:100–133

    Article  CAS  Google Scholar 

  2. Kalendová A, Kalenda P, Veselý D (2006) Comparison of the efficiency of inorganic nonmetal pigments with zinc powder in anticorrosion paints. Prog Org Coatings 57:1–10

    Article  CAS  Google Scholar 

  3. Goswami S, Manna A, Paul S et al (2014) FRET based ‘red-switch’ for Al3+ over ESIPT based ‘green-switch’ for Zn2+ : dual channel detection with live-cell imaging on a dyad platform. RSC Adv 4:34572–34576

    Article  CAS  Google Scholar 

  4. Hanaoka K, Kikuchi K, Kojima H, Urano Y, Nagano T (2004) Development of a zinc ion-selective luminescent lanthanide chemosensor for biological applications. J Am Chem Soc 126:12470–12476

    Article  CAS  PubMed  Google Scholar 

  5. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor Osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    Article  CAS  PubMed  Google Scholar 

  6. Helal A, Kim HS (2009) Thiazole-based chemosensor: synthesis and ratiometric fluorescence sensing of zinc. Tetrahedron Lett 50:5510–5515

    Article  CAS  Google Scholar 

  7. Chen X, Lim CS, Lee D, Lee S, Park SJ, Kim HM, Yoon J (2017) Two-photon fluorescence sensors for imaging NMDA receptors and monitoring release of Zn2+ from the presynaptic terminal. Biosens Bioelectron 91:770–779

    Article  CAS  PubMed  Google Scholar 

  8. Maity D, Govindaraju T (2012) A differentially selective sensor with fluorescence turn-on response to Zn2+ and dual-mode ratiometric response to Al3+ in aqueous media. Chem Commun 48:1039–1041

    Article  CAS  Google Scholar 

  9. Kim KB, Kim H, Song EJ et al (2013) A cap-type Schiff base acting as a fluorescence sensor for zinc(II) and a colorimetric sensor for iron(II), copper(II), and zinc(II) in aqueous media. Dalton Trans 42:16569

    Article  CAS  PubMed  Google Scholar 

  10. Park GJ, Lee JJ, You GR et al (2016) A dual chemosensor for Zn2+ and Co2+ in aqueous media and living cells: experimental and theoretical studies. Sensors Actuators B Chem 223:509–519

    Article  CAS  Google Scholar 

  11. Yun JY, Jo TG, Han J et al (2017) A highly sensitive and selective fluorescent chemosensor for the sequential recognition of Zn2+ and S2− in living cells and aqueous media. Sensors Actuators B Chem 255:3108–3116

    Article  CAS  Google Scholar 

  12. Qian F, Zhang C, Zhang Y, He W, Gao X, Hu P, Guo Z (2009) Visible light excitable Zn2+ fluorescent sensor derived from an intramolecular charge transfer fluorophore and its in vitro and in vivo application. J Am Chem Soc 131:1460–1468

    Article  CAS  PubMed  Google Scholar 

  13. Pandith A, Uddin N, Choi CH, Kim H-S (2017) Highly selective imidazole-appended 9,10-N,N′-diaminomethylanthracene fluorescent probe for switch-on Zn2+ detection and switch-off H2PO4 and CN detection in 80% aqueous DMSO, and applications to sequential logic gate operations. Sensors Actuators B Chem 247:840–849

    Article  CAS  Google Scholar 

  14. Dey S, Roy A, Maiti GP et al (2016) A highly selective and biocompatible chemosensor for sensitive detection of zinc(ii). New J Chem 40:1365–1376

    Article  CAS  Google Scholar 

  15. Park GJ, Kim H, Lee JJ et al (2015) A highly selective turn-on chemosensor capable of monitoring Zn2+ concentrations in living cells and aqueous solution. Sensors Actuators B Chem 215:568–576

    Article  CAS  Google Scholar 

  16. Gupta VK, Mergu N, Singh AK (2014) Fluorescent chemosensors for Zn2+ ions based on flavonol derivatives. Sensors Actuators B Chem 202:674–682

    Article  CAS  Google Scholar 

  17. Ma Y, Chen H, Wang F et al (2014) A highly sensitive and selective ratiometric fluorescent sensor for Zn2+ ion based on ICT and FRET. Dyes Pigments 102:301–307

    Article  CAS  Google Scholar 

  18. Xiao S, Liu Z, Zhao J et al (2016) A novel fluorescent sensor based on imidazo[1,2-a]pyridine for Zn2+. RSC Adv 6:27119–27125

    Article  CAS  Google Scholar 

  19. Dong Y, Fan R, Chen W, Wang P, Yang Y (2017) A simple quinolone Schiff-base containing CHEF based fluorescence ‘turn-on’ chemosensor for distinguishing Zn2+ and Hg2+ with high sensitivity, selectivity and reversibility. Dalton Trans 46:6769–6775

    Article  CAS  PubMed  Google Scholar 

  20. Ding A, Tang F, Wang T et al (2015) A α-cyanostilbene-modified Schiff base as efficient turn-on fluorescent chemosensor for Zn2+. J Chem Sci 127:375–382

    Article  CAS  Google Scholar 

  21. Pourfallah G, Lou X (2016) A novel recyclable magnetic nanostructure for highly sensitive, selective and reversible detection of zinc ions in aqueous solutions. Sensors Actuators B Chem 233:379–387

    Article  CAS  Google Scholar 

  22. Gao C, Zhu H, Zhang M et al (2015) A new highly Zn2+-selective and “off–on” fluorescent chemosensor based on the pyrene group. Anal Methods 7:8172–8176

    Article  CAS  Google Scholar 

  23. Narayanaswamy N, Maity D, Govindaraju T (2011) Reversible fluorescence sensing of Zn2+ based on pyridine-constrained bis(triazole-linked hydroxyquinoline) sensor. Supramol Chem 23:703–709

    Article  CAS  Google Scholar 

  24. Choi YW, You GR, Lee JJ, Kim C (2016) Turn-on fluorescent chemosensor for selective detection of Zn2+ in an aqueous solution: experimental and theoretical studies. Inorg Chem Commun 63:35–38

    Article  CAS  Google Scholar 

  25. Lee JJ, Lee SA, Kim H et al (2015) A highly selective CHEF-type chemosensor for monitoring Zn2+ in aqueous solution and living cells. RSC Adv 5:41905–41913

    Article  CAS  Google Scholar 

  26. Tayade K, Bondhopadhyay B, Keshav K, Sahoo SK, Basu A, Singh J, Singh N, Nehete DT, Kuwar A (2016) A novel zinc(II) and hydrogen sulphate selective fluorescent “turn-on” chemosensor based on isonicotiamide: INHIBIT type’s logic gate and application in cancer cell imaging. Analyst 141:1814–1821

    Article  CAS  PubMed  Google Scholar 

  27. Balamurugan R, Chang W-I, Zhang Y, Fitriyani S, Liu JH (2016) A turn-on fluorescence chemosensor based on a tripodal amine [tris(pyrrolyl-α-methyl)amine]-rhodamine conjugate for the selective detection of zinc ions. Analyst 141:5456–5462

    Article  CAS  PubMed  Google Scholar 

  28. Li P, Zhou X, Huang R et al (2014) A highly fluorescent chemosensor for Zn2+ and the recognition research on distinguishing Zn2+ from Cd2+. Dalton Trans 43:706–713

    Article  CAS  PubMed  Google Scholar 

  29. Ponniah SJ, Barik SK, Thakur A et al (2014) Triazolyl Alkoxy Fischer Carbene complexes in conjugation with Ferrocene/Pyrene as sensory units: multifunctional Chemosensors for Lead(II), copper(II), and zinc(II) ions. Organometallics 33:3096–3107

    Article  CAS  Google Scholar 

  30. Wang P, Wu J, Zhou P et al (2015) A novel peptide-based fluorescent chemosensor for measuring zinc ions using different excitation wavelengths and application in live cell imaging. J Mater Chem B 3:3617–3624

    Article  CAS  PubMed  Google Scholar 

  31. Roldan PS, Alcântara IL, Padilha CCF, Padilha PM (2005) Determination of copper, iron, nickel and zinc in gasoline by FAAS after sorption and preconcentration on silica modified with 2-aminotiazole groups. Fuel 84:305–309

    Article  CAS  Google Scholar 

  32. Persson DP, Hansen TH, Laursen KH, Schjoerring JK, Husted S (2009) Simultaneous iron, zinc, sulfur and phosphorus speciation analysis of barley grain tissues using SEC-ICP-MS and IP-ICP-MS. Metallomics 1:418–426

    Article  CAS  PubMed  Google Scholar 

  33. De Oliveira MF, Saczk AA, Okumura LL et al (2004) Simultaneous determination of zinc, copper, lead, and cadmium in fuel ethanol by anodic stripping voltammetry using a glassy carbon-mercury-film electrode. Anal Bioanal Chem 380:135–140

    Article  CAS  PubMed  Google Scholar 

  34. Sharma N, Reja SI, Bhalla V, Kumar M (2015) A thiacalix[4]crown based chemosensor for Zn2+ and H2PO4 : sequential logic operations at the molecular level. Dalton Trans 44:6062–6068

    Article  CAS  PubMed  Google Scholar 

  35. Lee SY, Bok KH, Kim C (2017) A fluorescence “turn-on” chemosensor for Hg2+ and Ag+ based on NBD (7-nitrobenzo-2-oxa-1,3-diazolyl). RSC Adv 7:290–299

    Article  CAS  Google Scholar 

  36. Wu J, Zhao X, Gao Y et al (2015) A steroid-salen conjugate for zinc ion recognition and its applications in test-strips, living cells imaging, and cascade recognition for dihydrogen phosphate. Sensors Actuators B Chem 221:334–340

    Article  CAS  Google Scholar 

  37. Ma D-L, He H-Z, Zhong H-J, Lin S, Chan DS, Wang L, Lee SM, Leung CH, Wong CY (2014) Visualization of Zn 2+ ions in live Zebrafish using a luminescent iridium(III) Chemosensor. ACS Appl Mater Interfaces 6:14008–14015

    Article  CAS  PubMed  Google Scholar 

  38. Lee JJ, Park GJ, Kim YS et al (2015) A water-soluble carboxylic-functionalized chemosensor for detecting Al3+ in aqueous media and living cells: experimental and theoretical studies. Biosens Bioelectron 69:226–229

    Article  CAS  Google Scholar 

  39. Zhang JF, Zhou Y, Yoon J et al (2010) Naphthalimide modified rhodamine derivative: Ratiometric and selective fluorescent sensor for Cu2+ based on two different approaches. Org Lett 12:3852–3855

    Article  CAS  PubMed  Google Scholar 

  40. Fegade U, Sharma H, Singh N et al (2014) An amide based dipodal Zn2+ complex for multications recognition: Nanomolar detection. J Lumin 149:190–195

    Article  CAS  Google Scholar 

  41. Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD (2017) Fluorescent chemosensors: the past, present and future. Chem Soc Rev 46:7105–7123

    Article  CAS  PubMed  Google Scholar 

  42. Guo Z, Kim GH, Yoon J, Shin I (2014) Synthesis of a highly Zn2+-selective cyanine-based probe and its use for tracing endogenous zinc ions in cells and organisms. Nat Protoc 9:1245–1254

    Article  CAS  PubMed  Google Scholar 

  43. Mandal S, Mandal SK, Khuda-Bukhsh AR, Goswami S (2015) Pyridoxal based fluorescent chemosensor for detection of copper(II) in solution with moderate selectivity and live cell imaging. J Fluoresc 25:1437–1447

    Article  CAS  PubMed  Google Scholar 

  44. Maity D, Manna AK, Karthigeyan D, Kundu TK, Pati SK, Govindaraju T (2011) Visible-near-infrared and fluorescent copper sensors based on julolidine conjugates: selective detection and fluorescence imaging in living cells. Chem Eur J 17:11152–11161

    Article  CAS  PubMed  Google Scholar 

  45. Zhang JF, Kim S, Han JH, Lee SJ, Pradhan T, Cao QY, Lee SJ, Kang C, Kim JS (2011) Pyrophosphate-selective fluorescent chemosensor based on 1,8-Naphthalimide-DPA-Zn(II) complex and its application for cell imaging. Org Lett 13:5294–5297

    Article  CAS  PubMed  Google Scholar 

  46. Li N-N, Ma Y-Q, Zeng S et al (2017) A highly selective colorimetric and fluorescent turn-on chemosensor for Zn2+ and its logic gate behavior. Synth Met 232:17–24

    Article  CAS  Google Scholar 

  47. Hu J-H, Li J-B, Qi J, Sun Y (2015) Acylhydrazone based fluorescent chemosensor for zinc in aqueous solution with high selectivity and sensitivity. Sensors Actuators B Chem 208:581–587

    Article  CAS  Google Scholar 

  48. Jung JM, Lee JJ, Nam E et al (2017) A zinc fluorescent sensor used to detect mercury (II) and hydrosulfide. Spectrochim Acta A 178:203–211

    Article  CAS  Google Scholar 

  49. Velmurugan K, Raman A, Don D et al (2015) Quinoline benzimidazole-conjugate for the highly selective detection of Zn(II) by dual colorimetric and fluorescent turn-on responses. RSC Adv 5:44463–44469

    Article  CAS  Google Scholar 

  50. Kasirajan G, Krishnaswamy V, Raju N et al (2017) New pyrazolo-quinoline scaffold as a reversible colorimetric fluorescent probe for selective detection of Zn2+ ions and its imaging in live cells. J Photochem Photobiol A Chem 341:136–145

    Article  CAS  Google Scholar 

  51. Mukherjee S, Talukder S (2016) A reversible luminescent quinoline based chemosensor for recognition of Zn2+ ions in aqueous methanol medium and its logic gate behavior. J Lumin 177:40–47

    Article  CAS  Google Scholar 

  52. Chae JB, Yun D, Kim S et al (2019) Fluorescent determination of zinc by a quinoline-based chemosensor in aqueous media and zebrafish. Spectrochim Acta A 219:74–82

    Article  CAS  Google Scholar 

  53. Mao Z, Hu L, Dong X, Zhong C, Liu BF, Liu Z (2014) Highly sensitive Quinoline-based two-photon fluorescent probe for monitoring intracellular free zinc ions. Anal Chem 86:6548–6554

    Article  CAS  PubMed  Google Scholar 

  54. Song EJ, Kang J, You GR, Park GJ, Kim Y, Kim SJ, Kim C, Harrison RG (2013) A single molecule that acts as a fluorescence sensor for zinc and cadmium and a colorimetric sensor for cobalt. Dalton Trans 42:15514–15520

    Article  CAS  PubMed  Google Scholar 

  55. Mwalupindi AG, Rideau A, Agabaria RA, Warner IM (1994) Influence of organized media on the absorption and fluorescence spectra of auramine-o dye. Talanta 41:599–609

    Article  CAS  PubMed  Google Scholar 

  56. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT, 2009

  57. Becke AD (1993) Density-functional thermochemistry. III The role of exact exchange J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  58. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  59. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  60. Francl MM, Pietro WJ, Hehre WJ et al (1982) Self-consistent molecular orbital methods. XXIII A polarization-type basis set for second-row elements J Chem Phys 77:3654–3665

    CAS  Google Scholar 

  61. Vincenzo B, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem 102:1995–2001

    Article  Google Scholar 

  62. Maurizio C, Vincenzo B (2001) Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys 115:4708–4717

    Article  CAS  Google Scholar 

  63. Job P (1928) Formation and stability of inorganic complexes in solution. Ann Chim 9:113–203

    CAS  Google Scholar 

  64. Tsui Y-K, Devaraj S, Yen Y-P (2012) Azo dyes featuring with nitrobenzoxadiazole (NBD) unit: a new selective chromogenic and fluorogenic sensor for cyanide ion. Sensors Actuators B Chem 161:510–519

    Article  CAS  Google Scholar 

  65. World Health Organization (1998) Guidelines for drinking-water quality-volume 1-recommendations-addendum. Geneva

Download references

Acknowledgements

This work was supported by SNUT (Seoul National University of Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheal Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1861 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, J.B., Lee, H. & Kim, C. Determination of Zinc Ion by a Quinoline-Based Fluorescence Chemosensor. J Fluoresc 30, 347–356 (2020). https://doi.org/10.1007/s10895-020-02501-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02501-6

Keywords

Navigation