Skip to main content
Log in

A Solid-State Fluorescence Sensor for Nitroaromatics and Nitroanilines Based on a Conjugated Calix[4]arene Polymer

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new conjugated polymer possessing calix[4]arene-oxacyclophane units wired-in-series by phenyleneethynylene linkers was synthesized by a Sonogashira-Hagihara cross-coupling method in high yield. The polymer was structurally characterized by FTIR and 1H/13C/HSQC NMR techniques, and its average Mn (38.5 kDa) retrieved from GPC analysis. The polymer is highly emissive (ΦF = 0.55) and exhibits a longer-than-usual excited-state lifetime (1.80 ns) for a phenyleneethynylene type polymer. Similar photophysical properties (absorption and fluorescence emission) were observed in solution and in solid-state. This stems from the presence of bulky calixarene moieties along the polymer chains which prevent interchain staking and the formation of ground-state aggregates and/or non-emissive exciplexes, both deleterious to solid-state materials envisioned for fluorescence sensing applications. Moreover, the intrinsic molecular recognition capabilities of its two rigid inner cavities (calixarene and cyclophane sub-units), allied with the high three-dimensionality of the macromolecule that creates additional interstitial voids around the molecular receptors, can boost its sensory responses towards specific analytes. A high sensitive response was observed in the detection of nitroaromatics and nitroanilines in neat vapour phases by casted films of the polymer. The largest sensitivities were obtained for 2,4-dinitrotoluene (a taggant for the explosive TNT; > 85% of fluorescence quenching upon 1 min exposure) and ortho-nitroaniline (90% of emission reduction in 30 s). The sensory responses attained in solid-state are discussed on the basis of the electron affinities of the analytes and their electrostatic interactions with polymer films.

Sensing the threats! A high sensitive response was observed in the detection of explosives and noxious nitroanilines in neat vapour phases by thinfilms of a calixarene-based polymer

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Scheme 1
Fig. 1
Fig. 2
Chart 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ponnu A, Anslyn EV (2010) A fluorescence-based cyclodextrin sensor to detect nitroaromatic explosives. Supramol Chem 22:65–71. https://doi.org/10.1080/10610270903378032

    Article  CAS  Google Scholar 

  2. Zhu W, Li W, Wang C, Cui J, Yang H, Jiang Y, Li G (2013) CB[8]-based rotaxane as a useful platform for sensitive detection and discrimination of explosives. Chem Sci 4:3583–3590. https://doi.org/10.1039/c3sc51132d

    Article  CAS  Google Scholar 

  3. Naddo T, Che Y, Zhang W, Balakrishnan K, Yang X, Yen M, Zhao J, Moore JS, Zang L (2007) Detection of explosives with a fluorescent Nanofibril film. J Am Chem Soc 129:6978–6979. https://doi.org/10.1021/ja070747q

    Article  CAS  PubMed  Google Scholar 

  4. Costa AI, Prata JV (2012) Substituted p-phenylene ethynylene trimers as fluorescent sensors for nitroaromatic explosives. Sensors Actuators B Chem 161:251–260. https://doi.org/10.1016/j.snb.2011.10.027

    Article  CAS  Google Scholar 

  5. Bissell RA, Prasanna de Silva A, Gunaratne HQN, Lynch PLM, Maguire GEM, Sandanayake KRAS (1992) Molecular fluorescent Signalling with ‘Fluor-spacer-receptor‘ systems: approaches to sensing and switching devices via Supramolecular Photophysics. Chem Soc Rev 21:187–195. https://doi.org/10.1039/CS9922100187

    Article  CAS  Google Scholar 

  6. Fabbrizzi L, Poggi A (1995) Sensors and switches from supramolecular chemistry. Chem Soc Rev 24:197–202. https://doi.org/10.1039/CS9952400197

    Article  CAS  Google Scholar 

  7. Prasanna de Silva A, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566. https://doi.org/10.1021/cr960386p

    Article  PubMed  Google Scholar 

  8. Sun X, Wang Y, Lei Y (2015) Fluorescence based explosive detection: from mechanisms to sensory materials. Chem Soc Rev 44:8019–8061. https://doi.org/10.1039/c5cs00496a

    Article  CAS  PubMed  Google Scholar 

  9. Yang J-S, Swager TM (1998) Porous shape persistent fluorescent polymer films: an approach to TNT sensory materials. J Am Chem Soc 120:5321–5322. https://doi.org/10.1021/ja9742996

    Article  CAS  Google Scholar 

  10. Yang J-S, Swager TM (1998) Fluorescent porous polymer films as TNT Chemosensors: electronic and structural effects. J Am Chem Soc 120:11864–11873. https://doi.org/10.1021/ja982293q

    Article  CAS  Google Scholar 

  11. Cumming CJ, Aker C, Fisher M, Fox M, Grone MJ, Reust D, Rockley MG, Swager TM, Towers E, Williams V (2001) Using novel fluorescent polymers as sensory materials for above-ground sensing of chemical signature compounds emanating from buried landmines. IEEE Trans Geosci Remote Sens 39:1119–1128. https://doi.org/10.1109/36.927423

    Article  Google Scholar 

  12. Andrew TL, Swager TM (2011) Structure-property relationships for Exciton transfer in conjugated polymers. J Polym Sci B Polym Phys 49:476–498. https://doi.org/10.1002/polb.22207

    Article  CAS  Google Scholar 

  13. Costa AI, Pinto HD, Ferreira LFV, Prata JV (2012) Solid-state sensory properties of CALIX-poly(phenylene ethynylene)s toward nitroaromatic explosives. Sensors Actuators B Chem 161:702–713. https://doi.org/10.1016/j.snb.2011.11.017

    Article  CAS  Google Scholar 

  14. Barata PD, Prata JV (2014) Cooperative effects in the detection of a Nitroaliphatic liquid explosive and an explosive Taggant in the vapor phase by calix[4]arene-based Carbazole-containing conjugated polymers. ChemPlusChem 79:83–89. https://doi.org/10.1002/cplu.201300280

    Article  CAS  PubMed  Google Scholar 

  15. Eaton DF (1998) Reference materials for fluorescence measurement. Pure Appl Chem 60:1107–1114. https://doi.org/10.1351/pac198860071107

    Article  Google Scholar 

  16. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York. https://doi.org/10.1007/978-0-387-46312-4

    Book  Google Scholar 

  17. Spartan’14 Molecular Modeling Program (vs 1.1.8), Wavefunction, Inc., Irvine, CA, 2014

  18. Dennis WH Jr, Rosenblatt DH, Blucher WG, Coon CL (1975) Improved synthesis of TNT isomers. J Chem Eng Data 20:202–203. https://doi.org/10.1021/je60065a016

    Article  CAS  Google Scholar 

  19. Teixeira CM, Costa AI, Prata JV (2013) A new fluorescent double-cavity calix[4]arene: synthesis and complexation studies toward nitroanilines. Tetrahedron Lett 54:6602–6606. https://doi.org/10.1016/j.tetlet.2013.09.109

    Article  CAS  Google Scholar 

  20. Bunz UHF (2007) Poly(paraphenyleneethynylene)s and poly(aryleneethynylenes): materials with a bright future. In: Skotheim TA, Reynolds JR (eds) Conjugated polymers. CRC Press, Boca Raton, pp 1–51

    Google Scholar 

  21. Bunz UHF (2000) Poly(aryleneethynylene)s: syntheses, properties, structures, and applications. Chem Rev 100:1605–1644. https://doi.org/10.1021/cr990257j

    Article  CAS  PubMed  Google Scholar 

  22. Barata PD, Costa AI, Ferreira LFV, Prata JV (2010) Synthesis, structure, and optical properties of an alternating calix[4]arene-based meta-linked Phenylene Ethynylene copolymer. J Polym Sci A Polym Chem 48:5040–5052. https://doi.org/10.1002/pola.24302

    Article  CAS  Google Scholar 

  23. Barata PD, Prata JV (2013) New entities for sensory chemistry based on calix[4]arene-carbazole conjugates: from synthesis to applications. Supramol Chem 25:782–797. https://doi.org/10.1080/10610278.2013.804185

    Article  CAS  Google Scholar 

  24. For human health effects and environmental fate and exposure to TNT, 2,4-DNT, o-NA, m-NA and p-NA, see: Hazardous Substances Data Bank (HSDB) at Toxicology Data Network (TOXNET), U. S. National Library of Medicine. https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm. Accessed July 2019

  25. Pella PA (1977) Measurement of the vapor pressures of TNT, 2,4-DNT, 2,6-DNT, and EGDN. J Chem Thermodyn 9:301–305. https://doi.org/10.1016/0021-9614(77)90049-0

    Article  CAS  Google Scholar 

  26. Wang Z, Wang ZY, Ma J, Bock WJ, Ma D (2010) Effect of film thickness, blending and undercoating on optical detection of nitroaromatics using fluorescent polymer films. Polymer 51:842–847. https://doi.org/10.1016/j.polymer.2010.01.003

    Article  CAS  Google Scholar 

  27. Nie H, Zhao Y, Zhang M, Ma Y, Baumgarten M, Müllen K (2011) Detection of TNT explosives with a new fluorescent conjugated polycarbazole polymer. Chem Commun 47:1234–1236. https://doi.org/10.1039/c0cc03659e

    Article  CAS  Google Scholar 

  28. Daubert TE, Danner RP (eds) (1989) Physical and thermodynamic properties of pure chemicals: data compilation. Taylor & Francis, Washington, DC

    Google Scholar 

  29. Malaspina L, Gigli R, Bardi G, De Maria G (1973) Simultaneous determination by Knudsen effusion microcalorimetry of the vapour pressure and the enthalpy of sublimation of p- and m-nitroaniline. J Chem Thermodyn 5:699–706. https://doi.org/10.1016/S0021-9614(73)80010-2

    Article  CAS  Google Scholar 

  30. Ferro D, Piacente V (1985) Heat of vaporization of o-, m- and p-nitroaniline. Thermochim Acta 90:387–389. https://doi.org/10.1016/0040-6031(85)87121-5

    Article  CAS  Google Scholar 

  31. Zhang Y, Xia J, Feng X, Tong B, Shi J, Zhi J, Dong Y (2012) Applications of self-assembled one-bilayer nanofilms based on hydroxyl-containing tetraphenylethene derivative's nanoaggregates as chemosensors to volatile of solid nitroaromatics. Sensors Actuators B Chem 161:587–593. https://doi.org/10.1016/j.snb.2011.11.004

    Article  CAS  Google Scholar 

  32. Oudar JL, Chemla DS (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J Chem Phys 66:2664–2668. https://doi.org/10.1063/1.434213

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior (FCT/MCTES) for financial support (UID/QUI/00616/2019) of this work. We also thank Prof. M. N. Berberan-Santos (Instituto Superior Técnico/Universidade de Lisboa) for providing access to fluorescence lifetime equipment and Dr. A. Fedorov for his assistance with the measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José V. Prata.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM1

(PDF 977 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prata, J.V., Costa, A.I. & Teixeira, C.M. A Solid-State Fluorescence Sensor for Nitroaromatics and Nitroanilines Based on a Conjugated Calix[4]arene Polymer. J Fluoresc 30, 41–50 (2020). https://doi.org/10.1007/s10895-019-02466-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02466-1

Keywords

Navigation