Skip to main content
Log in

A Novel Application of Fluorine Doped Carbon Dots Combining Vortex-Assisted Liquid-Liquid Microextraction for Determination of 4-Nitrophenol with Spectrofluorimetric Method

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A simple and fast vortex-assisted liquid–liquid microextraction (VA-LLME) combining with fluorescent carbon dots have been developed for the determination 4-nitrophenol (4-NP). The high fluorescent quantum yield (58.9%) fluorine doped carbon dots (F-CDs) were synthesized using tetrafluoroterephthalic acid as a fluorine source and using citric acid as a fluorine source and using ethylenediamine as a nitrogen source via a one-step hydrothermal method. F-CDs fluorescence was effectively quenched by 4-NP due to inner filter effect (IFE) and the strong interactions between functional groups (-COOH,-OH, -NH2 and -F groups) of the F-CDs and 4-NP. In VALLME method, n-octanol was employed as extraction solvent, and vortex-mix was exploited as a gentle mix method to reduce emulsification time and improve the extraction efficiency. The detection limits, the quantification limit and relative standard deviation for the 4-NP were found as 15 nM, 50 nM and 3.5%, respectively. Moreover, the obtained F-CDs can be employed as fluorescent probe to detect 4-NP in real environmental water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li QQ, Loganath A, Chong YS, Tan J, Obbard JP (2006) Persistent organic pollutants and adverse health effects in humans. Journal of Toxicology and Environmental Health-Part a-Current Issues 69:1987–2005

    Article  CAS  Google Scholar 

  2. Yue W, Chen M, Cheng Z, Xie L, Li MY (2018) Bioaugmentation of strain Methylobacterium sp C1 towards p-nitrophenol removal with broad spectrum coaggregating bacteria in sequencing batch biofilm reactors. J Hazard Mater 344:431–440

    Article  CAS  Google Scholar 

  3. Mulchandani P, Hangarter CM, Lei Y, Chen W, Mulchandani A (2005) Amperometric microbial biosensor for p-nitrophenol using Moraxella sp.-modified carbon paste electrode. Biosens Bioelectron 21:523–527

    Article  CAS  Google Scholar 

  4. Wei Y, Kong L-T, Yang R, Wang L, Liu J-H, Huang X-J (2011) Single-walled carbon nanotube/Pyrenecyclodextrin Nanohybrids for Ultrahighly sensitive and selective detection of p-Nitrophenol. Langmuir 27:10295–10301

    Article  CAS  Google Scholar 

  5. Jaber F, Schummer C, Al Chami J, Mirabel P, Millet M (2007) Solid-phase microextraction and gas chromatography-mass spectrometry for analysis of phenols and nitrophenols in rainwater, as their t-butyldimethylsilyl derivatives. Anal Bioanal Chem 387:2527–2535

    Article  CAS  Google Scholar 

  6. Belloli R, Barletta B, Bolzacchini E, Meinardi S, Orlandi M, Rindone B (1999) Determination of toxic nitrophenols in the atmosphere by high-performance liquid chromatography. J Chromatogr A 846:277–281

    Article  CAS  Google Scholar 

  7. Borras C, Laredo T, Mostany J, Scharifker BR (2004) Study of the oxidation of solutions of p-chlorophenol and p-nitrophenol on bi-doped PbO2 electrodes by UV-vis and FTIR in situ spectroscopy. Electrochim Acta 49:641–648

    Article  CAS  Google Scholar 

  8. Deng P, Xu Z, Feng Y, Li J (2012) Electrocatalytic reduction and determination of p-nitrophenol on acetylene black paste electrode coated with salicylaldehyde-modified chitosan. Sensors and Actuators B-Chemical 168:381–389

    Article  CAS  Google Scholar 

  9. Oubina A, Ballesteros B, Galve R, Barcelo D, Marco MP (1999) Development and optimization of an indirect enzyme-linked immunosorbent assay for 4-nitrophenol. Application to the analysis of certified water samples. Anal Chim Acta 387:255–266

    Article  CAS  Google Scholar 

  10. Nistor C, Oubina A, Marco MP, Barcelo D, Emneus J (2001) Competitive flow immunoassay with fluorescence detection for determination of 4-nitrophenol. Anal Chim Acta 426:185–195

    Article  CAS  Google Scholar 

  11. Bagheri H, Mohammadi A (2003) Pyrrole-based conductive polymer as the solid-phase extraction medium for the preconcentration of environmental pollutants in water samples followed by gas chromatography with flame ionization and mass spectrometry detection. J Chromatogr A 1015:23–30

    Article  CAS  Google Scholar 

  12. Sun J-N, Chen J, Shi Y-P (2014) Multiple functional ionic liquids based dispersive liquid-liquid microextraction combined with high performance chromatography for the determination of phenolic compounds in water samples. Talanta 125:329–335

    Article  CAS  Google Scholar 

  13. Lopez-Darias J, Pino V, Anderson JL, Graham MC, Afonso AM (2010) Determination of water pollutants by direct-immersion solid-phase microextraction using polymeric ionic liquid coatings. J Chromatogr A 1217:1236–1243

    Article  CAS  Google Scholar 

  14. Salvatierra-stamp V, Muniz-Valencia R, Jurado JM, Ceballos-Magana SG (2018) Hollow fiber liquid phase microextraction combined with liquid chromatography-tandem mass spectrometry for the analysis of emerging contaminants in water samples. Microchem J 140:87–95

    Article  CAS  Google Scholar 

  15. Lian Y, Qiu X, Yang Y (2014) Vortex-assisted liquid-liquid microextraction combined with HPLC for the simultaneous determination of five phthalate esters in liquor samples. Food Anal Methods 7:636–644

    Article  Google Scholar 

  16. Baker SN, Baker GA (2010) Luminescent carbon Nanodots: emergent Nanolights. Angewandte Chemie-International Edition 49:6726–6744

    Article  CAS  Google Scholar 

  17. Yan X, Cui X, Li B, Li L-S (2010) Large, solution-Processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett 10:1869–1873

    Article  CAS  Google Scholar 

  18. Yang S-T, Wang X, Wang H, Lu F, Luo PG, Cao L, Meziani MJ, Liu J-H, Liu Y, Chen M, Huang Y, Sun Y-P (2009) Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C 113:18110–18114

    Article  CAS  Google Scholar 

  19. Fang Y, Guo S, Li D, Zhu C, Ren W, Dong S, Wang E (2012) Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. ACS Nano 6:400–409

    Article  CAS  Google Scholar 

  20. Chowdhury S, Rooj B, Dutta A, Mandal U (2018) Review on recent advances in metal ions sensing using different fluorescent probes. J Fluoresc 28:999–1021

    Article  CAS  Google Scholar 

  21. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381

    Article  CAS  Google Scholar 

  22. Rooj B, Dutta A, Islam S, Mandal U (2018) Green synthesized carbon quantum dots from Polianthes tuberose L. petals for copper (II) and Iron (II) detection. J Fluoresc 28:1261–1267

    Article  CAS  Google Scholar 

  23. Sun Q, Long Y, Li H, Pan S, Yang J, Liu SP, Hu XL (2018) Fluorescent carbon dots as cost-effective and facile probes for Caffeic acid sensing via a fluorescence quenching process. J Fluoresc 28:523–531

    Article  CAS  Google Scholar 

  24. Zuo P, Lu X, Sun Z, Guo Y, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183:519–542

    Article  CAS  Google Scholar 

  25. Xu XY, Ray R, Gu YL, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737

    Article  CAS  Google Scholar 

  26. Radovic LR, Bockrath B (2005) On the chemical nature of graphene edges: origin of stability and potential for magnetism in carbon materials. J Am Chem Soc 127:5917–5927

    Article  CAS  Google Scholar 

  27. Go G-W, Lee E-J, Kang S, Jang A (2016) Combined coagulation/ceramic membrane ultrafiltration system for reclamation of degreasing washing water. Desalin Water Treat 57:7479–7486

    Article  CAS  Google Scholar 

  28. Kong W, Wu D, Li G, Chen X, Gong P, Sun Z, Chen G, Xia L, You J, Wu Y (2017) A facile carbon dots based fluorescent probe for ultrasensitive detection of ascorbic acid in biological fluids via non-oxidation reduction strategy. Talanta 165:677–684

    Article  CAS  Google Scholar 

  29. Angamuthu R, Rajendran R, Vairamuthu R (2018) Quick microwave assisted synthesis and in vitro imaging application of oxygen doped fluorescent carbon dots. J Fluoresc 28:959–966

    Article  CAS  Google Scholar 

  30. Yu J, Wang X, Kang Q, Li J, Shen D, Chen L (2017) One-pot synthesis of a quantum dot-based molecular imprinting nanosensor for highly selective and sensitive fluorescence detection of 4-nitrophenol in environmental waters. Environmental Science-Nano 4:493–502

    Article  CAS  Google Scholar 

  31. Geng S, Lin SM, Liu SG, Li NB, Luo HQ (2016) A new fluorescent sensor for detecting p-nitrophenol based on beta-cyclodextrin-capped ZnO quantum dots. RSC Adv 6:86061–86067

    Article  CAS  Google Scholar 

  32. Hao T, Wei X, Nie Y, Xu Y, Yan Y, Zhou Z (2016) An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol. Microchim Acta 183:2197–2203

    Article  CAS  Google Scholar 

  33. Yuan H, Yu J, Feng S, Gong Y (2016) Highly photoluminescent pH-independent nitrogen-doped carbon dots for sensitive and selective sensing of p-nitrophenol. RSC Adv 6:15192–15200

    Article  CAS  Google Scholar 

  34. Li W, Zhang H, Chen S, Liu Y, Zhuang J, Lei B (2016) Synthesis of molecularly imprinted carbon dot grafted YVO4:Eu3+ for the ratiometric fluorescent determination of paranitrophenol. Biosens Bioelectron 86:706–713

    Article  CAS  Google Scholar 

  35. Ahmed GHG, Badia Laino R, Garcia Calzon JA, Diaz Garcia ME (2015) Highly fluorescent carbon dots as nanoprobes for sensitive and selective determination of 4-nitrophenol in surface waters. Microchim Acta 182:51–59

    Article  CAS  Google Scholar 

  36. Chatzimarkou A, Chatzimitakos TG, Kasouni A, Sygellou L, Avgeropoulos A, Stalikas CD (2018) Selective FRET-based sensing of 4-nitrophenol and cell imaging capitalizing on the fluorescent properties of carbon nanodots from apple seeds. Sensors and Actuators B-Chemical 258:1152–1160

    Article  CAS  Google Scholar 

  37. Han L, Liu SG, Liang JY, Ju YJ, Li NB (2019) Luo HQ (2018) pH-mediated reversible fluorescence nanoswitch based on inner filter effect induced fluorescence quenching for selective and visual detection of 4-nitrophenol. J Hazard Mater 362:45–52

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Analysis and Testing Foundation of Kunming University of Science and Technology (2018 M20172118065), Yunnan Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaling Yang.

Ethics declarations

Conflicts of Interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, S., Mu, Z., Liu, H. et al. A Novel Application of Fluorine Doped Carbon Dots Combining Vortex-Assisted Liquid-Liquid Microextraction for Determination of 4-Nitrophenol with Spectrofluorimetric Method. J Fluoresc 29, 1133–1141 (2019). https://doi.org/10.1007/s10895-019-02427-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02427-8

Keywords

Navigation