Skip to main content
Log in

Optical Recognition of Ammonia and Amine Vapor Using “Turn-on” Fluorescent Chitosan Nanoparticles Imprinted on Cellulose Strips

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A practical fluorescent test dipstick for an efficient recognition of ammonia and amines vapors was developed. The prepared testing strip was based on a composite of molecularly imprinted chitosan nanoparticles, supported on cellulose paper assay, with artificial fluorescent receptor sites for ammonia/amines recognition in aqueous and gaseous phases. A modified chitosan nanoparticles containing fluorescein molecules, were successfully prepared and employed on cellulose paper strip creating fluorescent cellulose (FL-Cell) to act as “turn-on” fluorescent sensor for sensing and determining ammonia and organic amine vapor. We employed chitosan nanoparticles that had fluorescein incorporated as the fluorescent probe molecule, with a readout limit achieved for aqueous ammonia as low as 280 ppm at room temperature and atmospheric pressure. The sensor responded linearly relying on the aqueous ammonia concentration in the range of 0.13–280 ppm. The chromogenic fluorescent cellulose platform response depended on the acid-base characteristic effects of the fluorescein probe. The protonated form of fluorescein molecules immobilized within the chitosan nanoparticles were in a nanoenvironment demonstrating only weak fluorescence. When binding to ammonia/amine vapor, the fluorescein active sites were deprotonated and exhibited higher “turned-on” fluorescence as a result of exposure to those alkaline species. The simple fabrication and abovementioned characteristics of such fluorescent chitosan nanoparticles are such that they should be applicable for monitoring of ammonia/amines in either aqueous or vapor states. We studied the distribution of the fluorescent chitosan onto paper sheets fabricated from bleached bagasse pulp and coated with two different thicknesses of a fluorescent nanochitosan and blank nanochitosan solutions. A thin fluorescent nanochitosan layer was created on the surface of cellulose strips using an applicator. Its distribution was assessed by scanning electron microscopic (SEM) and transmission electron microscopic (TEM) analysis as well as Fourier-transform infrared spectroscopic (FT-IR) measurements. The mechanical properties were also tested. The exploitation of this “turn-on” fluorescence sensor invented platform should be amenable to different situations where determination of ammonia/amine vapor or aqueous solution is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

References

  1. Stratton JE, Hutkins RW, Taylor SL (1991) Biogenic amines in cheese and other fermented foods: a review. J Food Prot 54(6):460–470

    Article  CAS  PubMed  Google Scholar 

  2. Khattab TA, Rehan M, Aly SA, Hamouda T, Haggag KM, Klapotke TM (2017) Fabrication of PAN-TCF-hydrazone nanofibers by solution blowing spinning technique: naked-eye colorimetric sensor. J Environ Chem Eng 5(3):2515–2523

    Article  CAS  Google Scholar 

  3. Onal A (2007) A review: current analytical methods for the determination of biogenic amines in foods. Food Chem 103(4):1475–1486

    Article  CAS  Google Scholar 

  4. Khattab TA, Tiu BDB, Adas S, Bunge SD, Advincula RC (2016) Solvatochromic, thermochromic and pH-sensory DCDHF-hydrazone molecular switch: response to alkaline analytes. RSC Adv 6(104):102296–102305

    Article  CAS  Google Scholar 

  5. Li L, Gao P, Baumgarten M, Mullen K, Lu N, Fuchs H, Chi L (2013) High performance field-effect ammonia sensors based on a structured ultrathin organic semiconductor film. Adv Mater 25(25):3419–3425

    Article  CAS  PubMed  Google Scholar 

  6. Khattab TA (2018) Novel solvatochromic and halochromic sulfahydrazone molecular switch. J Mol Struct 1169:96–102

    Article  CAS  Google Scholar 

  7. Abou-Yousef H, Khattab TA, Youssef YA, Al-Balakocy N, Kamel S (2017) Novel cellulose-based halochromic test strips for naked-eye detection of alkaline vapors and analytes. Talanta 170:137–145

    Article  CAS  PubMed  Google Scholar 

  8. Khattab TA, Gaffer HE (2016) Synthesis and application of novel tricyanofuran hydrazone dyes as sensors for detection of microbes. Color Technol 132(6):460–465

    Article  CAS  Google Scholar 

  9. Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    Article  CAS  PubMed  Google Scholar 

  10. de Oliveira Barud HG, da Silva RR, da Silva Barud H, Tercjak A, Gutierrez J, Lustri WR, de Oliveira Junior OB, Ribeiro SJL (2016) A multipurpose natural and renewable polymer in medical applications: bacterial cellulose. Carbohydr Polym 153:406–420

    Article  CAS  PubMed  Google Scholar 

  11. Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27

    Article  CAS  Google Scholar 

  12. Francis Suh J-K, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21(24):2589–2598

    Article  CAS  Google Scholar 

  13. Ngah WW, Teong LC, Hanafiah MAKM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83(4):1446–1456

    Article  CAS  Google Scholar 

  14. Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144(1):51–63

    Article  CAS  PubMed  Google Scholar 

  15. Thakur VK, Voicu SL (2016) Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohydr Polym 146:148–165

    Article  CAS  PubMed  Google Scholar 

  16. Xu D, Qiu J, Wang Y, Yan J, Liu G-S, Yang B-R (2017) Chitosan-assisted buffer layer incorporated with hydroxypropyl methylcellulose-coated silver nanowires for paper-based sensors. Appl Phys Express 10(6):065002

    Article  Google Scholar 

  17. Luo Y, Teng Z, Li Y, Wang Q (2015) Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr Polym 122:221–229

    Article  CAS  PubMed  Google Scholar 

  18. Mansur AAP, Mansur HS (2015) Quantum dot/glycol chitosan fluorescent nanoconjugates. Nanoscale Res Lett 10(1):172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Geng Z, Zhang H, Xiong Q, Zhang Y, Zhao H, Wang G (2015) A fluorescent chitosan hydrogel detection platform for the sensitive and selective determination of trace mercury (II) in water. J Mater Chem A 3(38):19455–19460

    Article  CAS  Google Scholar 

  20. Barata JFB, Pinto RJB, Vaz Serra VIRC, Silvestre AJD, Trindade T, Neves MGPMS, Cavaleiro JAS, Daina S, Sadocco P, Freire CSR (2016) Fluorescent bioactive corrole grafted-chitosan films. Biomacromolecules 17(4):1395–1403

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Liu Z, Zhu W, Fu H, Ding Y, Xie J, Yang W, Li L, Cheng C (2015) Two different emission-wavelength fluorescent probes for aluminum ion based on tunable fluorophores in aqueous media. J Fluoresc 25(3):603–611

    Article  CAS  PubMed  Google Scholar 

  22. Seema H, Shirinfar B, Shi G, Youn S, Ahmed N (2017) Facile synthesis of a selective biomolecule Chemosensor and fabrication of its highly fluorescent graphene complex. J Phys Chem B 121(19):5007–5016

    Article  CAS  PubMed  Google Scholar 

  23. Dong JX, Gao ZF, Zhang Y, Li BL, Li NB, Luo HQ (2017) A selective and sensitive optical sensor for dissolved ammonia detection via agglomeration of fluorescent ag nanoclusters and temperature gradient headspace single drop microextraction. Biosens Bioelectron 91:155–161

    Article  CAS  PubMed  Google Scholar 

  24. Schaude C, Meindl C, Frohlich E, Attard J, Mohr GJ (2017) Developing a sensor layer for the optical detection of amines during food spoilage. Talanta 170:481–487

    Article  CAS  PubMed  Google Scholar 

  25. El-Sherbiny IM, Hefnawy A, Salih E (2016) New core–shell hyperbranched chitosan-based nanoparticles as optical sensor for ammonia detection. Int J Biol Macromol 86:782–788

    Article  CAS  PubMed  Google Scholar 

  26. Khairy GM, Azab HA, El-Korashy SA, Steiner M-S, Duerkop A (2016) Validation of a fluorescence sensor Microtiterplate for biogenic amines in meat and cheese. J Fluoresc 26(5):1905–1916

    Article  CAS  PubMed  Google Scholar 

  27. Chen Y, Zhu C, Cen J, Bai Y, He W, Guo Z (2015) Ratiometric detection of pH fluctuation in mitochondria with a new fluorescein/cyanine hybrid sensor. Chem Sci 6(5):3187–3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiao Y, Liu X, Zhou L, He H, Zhou P, Duan C, Peng X (2018) A fluorescein derivative-based fluorescent sensor for selective recognition of copper (II) ions. J Photochem Photobiol A Chem 355:67–71

    Article  CAS  Google Scholar 

  29. Bao X, Cao Q, Wu X, Shu H, Zhou B, Geng Y, Zhu J (2016) Design and synthesis of a new selective fluorescent chemical sensor for Cu2+ based on a pyrrole moiety and a fluorescein conjugate. Tetrahedron Lett 57(8):942–948

    Article  CAS  Google Scholar 

  30. Warratz R (2016) Electrochemical gas sensor with an ionic liquid as electrolyte for the detection of ammonia and amines. US Patent 9:395,323

    Google Scholar 

  31. Mirmohseni A, Oladegaragoze A (2003) Construction of a sensor for determination of ammonia and aliphatic amines using polyvinylpyrrolidone coated quartz crystal microbalance. Sensors Actuators B Chem 89(1–2):164–172

    Article  CAS  Google Scholar 

  32. Crowley K, Morrin A, Hernandez A, O’Malley E, Whitten PG, Wallace GG, Smyth MR, Killard AJ (2008) Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles. Talanta 77(2):710–717

    Article  CAS  Google Scholar 

  33. Hanson DR, McMurry PH, Jiang J, Tanner D, Huey LG (2011) Ambient pressure proton transfer mass spectrometry: detection of amines and ammonia. Environ Sci Technol 45(20):8881–8888

    Article  CAS  PubMed  Google Scholar 

  34. Diaz YJ, Page ZA, Knight AS, Treat NJ, Hemmer JR, Hawker CJ, de Alaniz JR (2017) A versatile and highly selective colorimetric sensor for the detection of amines. Chem Eur J 23(15):3562–3566

    Article  CAS  PubMed  Google Scholar 

  35. Huang X, Hu N, Gao R, Yu Y, Wang Y, Yang Z, Kong ESW, Wei H, Zhang Y (2012) Reduced graphene oxide-polyaniline hybrid: preparation, characterization and its applications for ammonia gas sensing. J Mater Chem 22(42):22488–22495

    Article  CAS  Google Scholar 

  36. Takagai Y, Nojiri Y, Takase T, Hinze WL, Butsugan M, Igarashi S (2010) “Turn-on” fluorescent polymeric microparticle sensors for the determination of ammonia and amines in the vapor state. Analyst 135(6):1417–1425

    Article  CAS  PubMed  Google Scholar 

  37. Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A, Raliya R, Biswas P (2015) Synthesis and in vitro antifungal efficacy of cu–chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol 75:346–353

    Article  CAS  PubMed  Google Scholar 

  38. Deng X, Cao M, Zhang J, Hu K, Yin Z, Zhou Z, Xiao X, Yang Y, Sheng W, Wu Y, Zeng Y (2014) Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials 35(14):4333–4344

    Article  CAS  PubMed  Google Scholar 

  39. Armarego WLF, Chai CLL (2013) Purification of laboratory chemicals. Butterworth-Heinemann

  40. Lide DR (2004) CRC handbook of chemistry and physics 2004–2005: a ready-reference book of chemical and physical data

  41. March J (1992) Advanced organic chemistry: reactions, mechanisms, and structure. John Wiley & Sons

  42. Albert A (2012) The determination of ionization constants: a laboratory manual. Springer Science & Business Media

  43. Perrin DD (1972) Dissociation constants of organic bases in aqueous solution: supplement 1972. Butterworths

  44. Widmer S, Dorrestijn M, Camerlo A, Urek SK, Lobnik A, Housecroft CE, Constable EC, Scherer LJ (2014) Coumarin meets fluorescein: a Förster resonance energy transfer enhanced optical ammonia gas sensor. Analyst 139(17):4335–4342

    Article  CAS  PubMed  Google Scholar 

  45. Preininger C, Ludwig M, Mohr GJ (1998) Effect of the sol-gel matrix on the performance of ammonia fluorosensors based on energy transfer. J Fluoresc 8(3):199–205

    Article  CAS  Google Scholar 

  46. Cao L-W, Wang H, Li J-S, Zhang H-S (2005) 6-oxy-(N-succinimidyl acetate)-9-(2′-methoxycarbonyl) fluorescein as a new fluorescent labeling reagent for aliphatic amines in environmental and food samples using high-performance liquid chromatography. J Chromatogr A 1063(1–2):143–151

    Article  CAS  PubMed  Google Scholar 

  47. Cao L, Wang H, Ma M, Zhang H (2006) Determination of biogenic amines in HeLa cell lysate by 6-oxy-(N-succinimidyl acetate)-9-(2′–methoxycarbonyl) fluorescein and micellar electrokinetic capillary chromatography with laser-induced fluorescence detection. Electrophoresis 27(4):827–836

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the National Research Center of Egypt for financial support of this research activity under grant number 11090110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tawfik A. Khattab.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattab, T.A., Kassem, N.F., Adel, A.M. et al. Optical Recognition of Ammonia and Amine Vapor Using “Turn-on” Fluorescent Chitosan Nanoparticles Imprinted on Cellulose Strips. J Fluoresc 29, 693–702 (2019). https://doi.org/10.1007/s10895-019-02381-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02381-5

Keywords

Navigation