Skip to main content
Log in

Thiol-Capped Gold Nanoparticle Biosensors for Rapid and Sensitive Visual Colorimetric Detection of Klebsiella pneumoniae

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the last few years, gold nanoparticle biosensors have been developed for rapid, precise, easy and inexpensive with high specificity and sensitivity detection of human, plant and animal pathogens. Klebsiella pneumoniae serotype K2 is one of the common gram-negative pathogens with high prevalence. Therefore, it is essential to provide the effective and exclusive method to detect the bacteria. Klebsiella pneumoniae serotype K2 strain ATCC9997 genomic DNA was applied to establish the detection protocol either with thiol-capped oligonucleotide probes and gold nanoparticles or polymerase chain reaction based on K2A gene sequence. In the presence of the genomic DNA and oligonucleotide probes, a change in the color of gold nanoparticles and maximum changes in wavelength at 550-650 nm was achieved. In addition, the result showed specificity of 15 × 105 CFU/mL and 9 pg/μL by gold nanoparticles probes. The lower limit of detection obtained by PCR method was 1 pg/μL. Moreover, results demonstrated a great specificity of the designed primers and probes for colorimetric detection assay and PCR. Colorimetric detection using gold nanoparticle probe with advantages such as the lower time required for detection and no need for expensive detection instrumentation compared to the biochemical and molecular methods could be introduced for rapid, accurate detection of the bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gabig-Ciminska M (2006) Developing nucleic acid-based electrical detection systems. Microb Cell Factories 5:9–9

    Article  CAS  Google Scholar 

  2. Mehrotra P (2016) Biosensors and their applications – a review. J Oral Biol Craniofac Res 6(2):153–159

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang L, Song S, Pan D, Li D, Fan C (2010) Gold nanoparticle-based sensing strategies for biomolecular detection. Pure Appl Chem 82(1):81–89

    Article  CAS  Google Scholar 

  4. Li Y, Schluesener HJ, Xu S (2010) Gold nanoparticle-based biosensors. Gold Bull 43(1):29–41

    Article  Google Scholar 

  5. Zeng S, Yong K-T, Roy I, Dinh X-Q, Yu X, Luan F (2011) A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6(3):491–506

    Article  CAS  Google Scholar 

  6. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1(1):13–28

    Article  Google Scholar 

  7. Wang Z, Ma L (2009) Gold nanoparticle probes. Coord Chem Rev 253(11):1607–1618

    Article  CAS  Google Scholar 

  8. Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallee-Belisle A, Gong X, Yuen JD, Hsu BB, Heeger AJ, Plaxco KW (2010) Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci 107(24):10837–10841

    Article  PubMed  CAS  Google Scholar 

  9. Ma Z, Tian L, Wang T, Wang C (2010) Optical DNA detection based on gold nanorods aggregation. Anal Chim Acta 673(2):179–184

    Article  PubMed  CAS  Google Scholar 

  10. Hu J, Ni P, Dai H, Sun Y, Wang Y, Jiang S, Li Z (2015) Aptamer-based colorimetric biosensing of abrin using catalytic gold nanoparticles. Analyst 140(10):3581–3586

    Article  PubMed  CAS  Google Scholar 

  11. Khan SA, Singh AK, Senapati D, Fan Z, Ray PC (2011) Targeted highly sensitive detection of multi-drug resistant salmonella DT104 using gold nanoparticles. Chem Commun 47(33):9444–9446

    Article  CAS  Google Scholar 

  12. Sattarahmady N, Tondro GH, Gholchin M, Heli H (2015) Gold nanoparticles biosensor of Brucella spp. genomic DNA: visual and spectrophotometric detections. Biochem Eng J 97:1–7

    Article  CAS  Google Scholar 

  13. Cenciarini-Borde C, Courtois S, La Scola B (2009) Nucleic acids as viability markers for bacteria detection using molecular tools. Future Microbiol 4(1):45–64

    Article  PubMed  CAS  Google Scholar 

  14. Borghei Y-S, Hosseini M, Dadmehr M, Hosseinkhani S, Ganjali MR, Sheikhnejad R (2016) Visual detection of cancer cells by colorimetric aptasensor based on aggregation of gold nanoparticles induced by DNA hybridization. Anal Chim Acta 904:92–97

    Article  PubMed  CAS  Google Scholar 

  15. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592):607–609

    Article  PubMed  CAS  Google Scholar 

  16. Yarbakht M, Nikkhah M (2015) Unmodified gold nanoparticles as a colorimetric probe for visual methamphetamine detection. J Exp Nanosci 11(7):593–601

    Article  CAS  Google Scholar 

  17. Larguinho M, Baptista PV (2012) Gold and silver nanoparticles for clinical diagnostics - from genomics to proteomics. J Proteome 75(10):2811–2823

    Article  CAS  Google Scholar 

  18. Larguinho M, Canto R, Cordeiro M, Pedrosa P, Fortuna A, Vinhas R, Baptista PV (2015) Gold nanoprobe-based non-crosslinking hybridization for molecular diagnostics. Expert Rev Mol Diagn 15(10):1355–1368

    Article  PubMed  CAS  Google Scholar 

  19. de Souza Lopes AC, Falcao Rodrigues J, de Morais Junior MA (2005) Molecular typing of Klebsiella pneumoniae isolates from public hospitals in Recife, Brazil. Microbiol Res 160(1):37–46

    Article  PubMed  CAS  Google Scholar 

  20. Hsu Y-L, Lin H-C, Yen T-Y, Hsieh T-H, Wei H-M, Hwang K-P (2015) Pyogenic liver abscess among children in a medical center in Central Taiwan. J Microbiol Immunol Infect 48(3):302–305

    Article  PubMed  Google Scholar 

  21. Chiu SK, Wu TL, Chuang YC, Lin JC, Fung CP, Lu PL, Wang JT, Wang LS, Siu LK, Yeh KM (2013) National surveillance study on carbapenem non-susceptible Klebsiella pneumoniae in Taiwan: the emergence and rapid dissemination of KPC-2 carbapenemase. PLoS One 8(7):e69428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kabha K, Nissimov L, Athamna A, Keisari Y, Parolis H, Parolis LA, Grue RM, Schlepper-Schafer J, Ezekowitz AR, Ohman DE (1995) Relationships among capsular structure, phagocytosis, and mouse virulence in Klebsiella pneumoniae. Infect Immun 63(3):847–852

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Wyres KL, Wick RR, Gorrie C, Jenney A, Follador R, Thomson NR, Holt KE (2016) Identification of Klebsiella capsule synthesis loci from whole genome data. Microb Genomics 2(12):1-15.

    Google Scholar 

  24. Doud MS, Grimes-Zeppegno R, Molina E, Miller N, Balachandar D, Schneper L, Poppiti R, Mathee K (2009) A k(2)A-positive Klebsiella pneumoniae causes liver and brain abscess in a saint Kitt's man. Int J Med Sci 6(6):301–304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Shen DX, Wang J, Li DD (2013) Klebsiella pneumoniae liver abscesses. Lancet Infect Dis 13(5):390–391

    Article  PubMed  Google Scholar 

  26. Ku Y-H, Chuang Y-C, Yu W-L (2008) Clinical spectrum and molecular characteristics of Klebsiella pneumoniae causing community-acquired extrahepatic abscess. J Microbiol Immunol Infect 41(4):311–317

    PubMed  CAS  Google Scholar 

  27. Brisse S, Passet V, Haugaard AB, Babosan A, Kassis-Chikhani N, Struve C, Decré D (2013) Wzi gene sequencing, a rapid method for determination of capsular type for Klebsiella strains. J Clin Microbiol 51(12):4073–4078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sikarwar A, Batra HV (2011) Identification of Klebsiella Pneumoniae by capsular polysaccharide polyclonal antibodies. Int J Chem Eng Appl 2(2):130–134.

    CAS  Google Scholar 

  29. Gierczynski R, Jagielski M, Rastawicki W, Kaluzewski S (2007) Multiplex-PCR assay for identification of Klebsiella pneumoniae isolates carrying the cps loci for K1 and K2 capsule biosynthesis. Pol J Microbiol 56(3):153–156

    PubMed  CAS  Google Scholar 

  30. Palfreyman JM (1978) Klebsiella serotyping by counter-current immunoelectrophoresis. J Hyg 81(2):219–225

    Article  PubMed  CAS  Google Scholar 

  31. Sikarwar AS (2014) A review on advanced serotyoing methods for identification of klebsiella pnuemoniae capsular serotypes. Indian J Med Res Pharm Sci 1(7):27–33

    Google Scholar 

  32. Mansour AMA, Zaki HM, Hassan NA, Al-Humiany AA (2014) Molecular characterization and immunoprotective activity of capsular polysaccharide of klebsiella pneumoniae isolated from farm animals at taif governorate. Am J Infect Dis 10(1):1–14

    Article  CAS  Google Scholar 

  33. Arakawa Y, Wacharotayankun R, Nagatsuka T, Ito H, Kato N, Ohta M (1995) Genomic organization of the Klebsiella pneumoniae cps region responsible for serotype K2 capsular polysaccharide synthesis in the virulent strain Chedid. J Bacteriol 177(7):1788–1796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Toze S (1999) PCR and the detection of microbial pathogens in water and wastewater. Water Res 33(17):3545–3556

    Article  CAS  Google Scholar 

  35. Aghababaee H (2012) Comparison of PCR technique with MPN method in identification of coliform Bacteria in water. Arch Sci 65(4):1–5

    Google Scholar 

  36. Kurupati P, Chow C, Kumarasinghe G, Poh CL (2004) Rapid detection of Klebsiella pneumoniae from blood culture bottles by real-time PCR. J Clin Microbiol 42(3):1337–1340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Compain F, Babosan A, Brisse S, Genel N, Audo J, Ailloud F, Kassis-Chikhani N, Arlet G, Decre D (2014) Multiplex PCR for detection of seven virulence factors and K1/K2 capsular serotypes of Klebsiella pneumoniae. J Clin Microbiol 52(12):4377–4380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Fernandez Cuenca F, Lopez Cerero L, Pascual Hernandez A (2013) Molecular typing methods for infection monitoring and control. Enferm Infecc Microbiol Clin 1:20–25

    Article  Google Scholar 

  39. Adzitey F, Huda N, Ali GRR (2013) Molecular techniques for detecting and typing of bacteria, advantages and application to foodborne pathogens isolated from ducks. Biotechnology 3(2):97–107

    Google Scholar 

  40. Queipo-Ortuno MI, De Dios Colmenero J, Macias M, Bravo MJ, Morata P (2008) Preparation of bacterial DNA template by boiling and effect of immunoglobulin G as an inhibitor in real-time PCR for serum samples from patients with brucellosis. Clin Vaccine Immunol 15(2):293–296

    Article  PubMed  CAS  Google Scholar 

  41. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Spec Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  42. Rashid MH, Bhattacharjee RR, Kotal A, Mandal TK (2006) Synthesis of spongy gold nanocrystals with pronounced catalytic activities. Langmuir 22(17):7141–7143

    Article  PubMed  CAS  Google Scholar 

  43. Soo PC, Horng YT, Chang KC, Wang JY, Hsueh PR, Chuang CY, Lu CC, Lai HC (2009) A simple gold nanoparticle probes assay for identification of Mycobacterium tuberculosis and Mycobacterium tuberculosis complex from clinical specimens. Mol Cell Probes 23(5):240–246

    Article  PubMed  CAS  Google Scholar 

  44. Gill P, Alvandi AH, Abdul-Tehrani H, Sadeghizadeh M (2008) Colorimetric detection of Helicobacter pylori DNA using isothermal helicase-dependent amplification and gold nanoparticle probes. Diagn Microbiol Infect Dis 62(2):119–124

    Article  PubMed  CAS  Google Scholar 

  45. Vaseghi A, Safaie N, Bakhshinejad B, Mohsenifar A, Sadeghizadeh M (2013) Detection of Pseudomonas syringae pathovars by thiol-linked DNA–gold nanoparticle probes. Sensors Actuators B Chem 181:644–651

    Article  CAS  Google Scholar 

  46. Fu Z, Zhou X, Xing D (2013) Sensitive colorimetric detection of Listeria monocytogenes based on isothermal gene amplification and unmodified gold nanoparticles. Methods 64(3):260–266

    Article  PubMed  CAS  Google Scholar 

  47. Andreadou M, Liandris E, Gazouli M, Taka S, Antoniou M, Theodoropoulos G, Tachtsidis I, Goutas N, Vlachodimitropoulos D, Kasampalidis I, Ikonomopoulos J (2014) A novel non-amplification assay for the detection of Leishmania spp. in clinical samples using gold nanoparticles. J Microbiol Methods 96:56–61

    Article  PubMed  CAS  Google Scholar 

  48. Osmani Bojd M, Kamaladini H, Haddadi F, Vaseghi F (2017) Thiolated AuNP probes and multiplex PCR for molecular detection of Staphylococcus epidermidis. Mol Cell Probes 34:30–36

    Article  PubMed  CAS  Google Scholar 

  49. Shawky SM, Bald D, Azzazy HM (2010) Direct detection of unamplified hepatitis C virus RNA using unmodified gold nanoparticles. Clin Biochem 43(13–14):1163–1168

    Article  PubMed  CAS  Google Scholar 

  50. Prasad D, Shankaracharya, Vidyarthi A (2011) Gold nanoparticles-based colorimetric assay for rapid detection of Salmonella species in food samples. World J Microbiol Biotechnol 27(9):2227–2230

    Article  CAS  Google Scholar 

  51. Khalil MA, Azzazy HM, Attia AS, Hashem AG (2014) A sensitive colorimetric assay for identification of Acinetobacter baumannii using unmodified gold nanoparticles. J Appl Microbiol 117(2):465–471

    Article  PubMed  CAS  Google Scholar 

  52. Lesniewski A, Los M, Jonsson-Niedziółka M, Krajewska A, Szot K, Los JM, Niedziolka-Jonsson J (2014) Antibody modified gold nanoparticles for fast and selective, colorimetric T7 Bacteriophage detection. Bioconjug Chem 25(4):644–648

    Article  PubMed  CAS  Google Scholar 

  53. Castilho ML, Vieira LS, Campos APC, Achete CA, Cardoso MAG, Raniero L (2015) The efficiency analysis of gold nanoprobes by FT-IR spectroscopy applied to the non-cross-linking colorimetric detection of Paracoccidioides brasiliensis. Sensors Actuators B Chem 215:258–265

    Article  CAS  Google Scholar 

  54. Wang L, Liu Z, Xia X, Yang C, Huang J, Wan S (2017) Colorimetric detection of Cucumber green mottle mosaic virus using unmodified gold nanoparticles as colorimetric probes. J Virol Methods 243:113–119

    Article  PubMed  CAS  Google Scholar 

  55. Kuswandi BG, Agus A, Kristiningrum N, Ahmad M (2017) Simple colorimetric DNA biosensor based on gold nanoparticles for pork adulteration detection in processed meats. Sens Transducers J 208(1):7–13

    CAS  Google Scholar 

  56. Ray PC, Fortner A, Griffin J, Kim CK, Singh JP, Yu H (2005) Laser-induced fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Chem Phys Lett 414(4):259–264

    Article  CAS  Google Scholar 

  57. Ghazi Y, Vaseghi A, Ahmadi S, Haddadi F (2018) Simultaneous expression of GUS and Actin genes by using the multiplex RT-PCR and multiplex gold nanoparticle probes. J Fluoresc 28(2):633–638

    Article  PubMed  CAS  Google Scholar 

  58. Pan HZ, Yu HW, Wang N, Zhang Z, Wan GC, Liu H, Guan X, Chang D (2015) Electrochemical DNA biosensor based on a glassy carbon electrode modified with gold nanoparticles and graphene for sensitive determination of Klebsiella pneumoniae carbapenemase. J Biotechnol 214:133–138

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Kamaladini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, S., Kamaladini, H., Haddadi, F. et al. Thiol-Capped Gold Nanoparticle Biosensors for Rapid and Sensitive Visual Colorimetric Detection of Klebsiella pneumoniae. J Fluoresc 28, 987–998 (2018). https://doi.org/10.1007/s10895-018-2262-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2262-z

Keywords

Navigation