Skip to main content
Log in

Highly Sensitive and Selective Detection of Amoxicillin Using Carbon Quantum Dots Derived from Beet

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the present work, we synthesized the carbon quantum dots (CQDs) by one step hydrothermal method using the dried beet powder as the carbon source without additional chemical reagents and functionalization. The as-prepared CQDs are quasi-spherical carbon nanoparticles with diameters of 4–8 nm as well as surface functional groups such as carboxyl and hydroxyl groups, and exhibit good water-solubility, biocompatibility, and strong fluorescence. It is confirmed that amoxicillin (AMO) could enhance the fluorescent intensity of CQDs, the I/I0 showed a linear correlation between the intensity of fluorescence and the concentration of AMO in a broad range. These superior properties render a potential application of the CQDs in biomedical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. De Baere S, De Backer P (2007) Quantitative determination of amoxicillin in animal feed using liquid chromatography with tandem mass spectrometric detection. Anal Chim Acta 586:319–325. https://doi.org/10.1016/j.aca.2006.10.036

    Article  PubMed  CAS  Google Scholar 

  2. Bergamini MF, Teixeira MFS, Dockal ER et al (2006) Evaluation of different voltammetric techniques in the determination of amoxicillin using a carbon paste electrode modified with [N, N’-ethylenebis(salicylideneaminato)] oxovanadium(IV). J Electrochem Soc 153:E94–E98. https://doi.org/10.1149/1.2184035

    Article  CAS  Google Scholar 

  3. Shah K, Hassan E, Ahmed F et al (2017) Novel fluorene-based supramolecular sensor for selective detection of amoxicillin in water and blood. Ecotoxicol Environ Saf 141:25–29. https://doi.org/10.1016/j.ecoenv.2017.03.003

    Article  PubMed  CAS  Google Scholar 

  4. Cohen ML (1992) Epidemiology of Drug Resistance: Implications for a Post-Antimicrobial Era. Science 257(80):1050–1055. https://doi.org/10.1126/science.257.5073.1050

    Article  PubMed  CAS  Google Scholar 

  5. Gonzales R, Bartlett JG, Besser RE et al (2001) Principles of appropriate antibiotic use for treatment of acute respiratory tract infections in adults: background, specific aims, and methods. Ann Emerg Med 37:690–697. https://doi.org/10.1067/S0196-0644(01)70087-X

    Article  PubMed  CAS  Google Scholar 

  6. Hoizey G, Lamiable D, Frances C et al (2002) Simultaneous determination of amoxicillin and clavulanic acid in human plasma by HPLC with UV detection. J Pharm Biomed Anal 30:661–666. https://doi.org/10.1016/S0731-7085(02)00289-3

    Article  PubMed  CAS  Google Scholar 

  7. Fuwei W, Jinghua Y, Ping D, Shenguang G (2010) Molecular imprinting-Chemiluminescence sensor for the determination of amoxicillin. Anal Lett 43:1033–1045. https://doi.org/10.1080/00032710903491104

    Article  CAS  Google Scholar 

  8. Straub RF, Voyksner RD (1993) Determination of penicillin G, ampicillin, amoxicillin, cloxacillin and cephapirin by high-performance liquid chromatography-electrospray mass spectrometry. J Chromatogr A 647:167–181. https://doi.org/10.1016/0021-9673(93)83336-Q

    Article  CAS  Google Scholar 

  9. Abdulghani AJ, Jasim HH, Hassan AS (2012) Determination of β-lactam antibiotics in pharmaceutical preparations by Uv-visible spectrophotometry atomic absorption and high performance liquid chromatography. Pakistan J Chem 2:150–160. https://doi.org/10.15228/2012.v02.i03.p08

    Article  CAS  Google Scholar 

  10. Ojani R, Raoof J-B, Zamani S (2012) A novel voltammetric sensor for amoxicillin based on nickel-curcumin complex modified carbon paste electrode. Bioelectrochemistry 85:44–49. https://doi.org/10.1016/j.bioelechem.2011.11.010

    Article  PubMed  CAS  Google Scholar 

  11. Xu X, Ray R, Gu Y et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737. https://doi.org/10.1021/ja040082h

    Article  PubMed  CAS  Google Scholar 

  12. Hutton GAM, Martindale BCM, Reisner E (2017) Carbon dots as photosensitisers for solar-driven catalysis. Chem Soc Rev 46:6111–6123. https://doi.org/10.1039/C7CS00235A

    Article  PubMed  CAS  Google Scholar 

  13. Wang F, Chen P, Feng Y et al (2017) Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin. Appl Catal B Environ 207:103–113. https://doi.org/10.1016/j.apcatb.2017.02.024

    Article  CAS  Google Scholar 

  14. Zhang J, Yu SH (2016) Carbon dots: large-scale synthesis, sensing and bioimaging. Mater Today 19:382–393. https://doi.org/10.1016/j.mattod.2015.11.008

    Article  CAS  Google Scholar 

  15. Shangguan J, Huang J, He D et al (2017) Highly Fe3+-selective fluorescent Nanoprobe based on Ultrabright N/P Codoped carbon dots and its application in biological samples. Anal Chem 89:7477–7484. https://doi.org/10.1021/acs.analchem.7b01053

    Article  PubMed  CAS  Google Scholar 

  16. Hou J, Dong J, Zhu H et al (2015) A simple and sensitive fluorescent sensor for methyl parathion based on l-tyrosine methyl ester functionalized carbon dots. Biosens Bioelectron 68:20–26. https://doi.org/10.1016/j.bios.2014.12.037

    Article  PubMed  CAS  Google Scholar 

  17. Tan J, Zou R, Zhang J et al (2016) Large-scale synthesis of N-doped carbon quantum dots and their phosphorescence properties in a polyurethane matrix. Nano 8:4742–4747. https://doi.org/10.1039/C5NR08516K

    Article  CAS  Google Scholar 

  18. Zhang C, Cui Y, Song L et al (2016) Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta 150:54–60. https://doi.org/10.1016/j.talanta.2015.12.015

    Article  PubMed  CAS  Google Scholar 

  19. Sharma S, Mehta SK, Kansal SK (2017) Highly fluorescent silver oxide/C-dots nanocomposite as selective and sensitive probe for highly efficient detection of Fe(III) ions. Sensors Actuators B Chem 243:1148–1156. https://doi.org/10.1016/j.snb.2016.12.100

    Article  CAS  Google Scholar 

  20. Atchudan R, Edison TNJI, Chakradhar D et al (2017) Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications. Sensors Actuators B Chem 246:497–509. https://doi.org/10.1016/j.snb.2017.02.119

    Article  CAS  Google Scholar 

  21. Wang J, Qiu F, Wu H et al (2017) Fabrication of fluorescent carbon dots-linked isophorone diisocyanate and β-cyclodextrin for detection of chromium ions. Spectrochim Acta Part A Mol Biomol Spectrosc 179:163–170. https://doi.org/10.1016/j.saa.2017.02.031

    Article  CAS  Google Scholar 

  22. Tabaraki R, Abdi O, Yousefipour S (2017) Green and selective fluorescent sensor for detection of Sn (IV) and Mo (VI) based on boron and nitrogen-co-doped carbon dots. J Fluoresc 27:651–657. https://doi.org/10.1007/s10895-016-1994-x

    Article  PubMed  CAS  Google Scholar 

  23. Liu H, He Z, Jiang LP, Zhu JJ (2015) Microwave-assisted synthesis of wavelength-tunable Photoluminescent carbon Nanodots and their potential applications. ACS Appl Mater Interfaces 7:4913–4920. https://doi.org/10.1021/am508994w

    Article  PubMed  CAS  Google Scholar 

  24. Guo Y, Wang Z, Shao H, Jiang X (2013) Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. Carbon N Y 52:583–589. https://doi.org/10.1016/j.carbon.2012.10.028

    Article  CAS  Google Scholar 

  25. Gonçalves HMR, Duarte AJ, Esteves da Silva JCG (2010) Optical fiber sensor for hg(II) based on carbon dots. Biosens Bioelectron 26:1302–1306. https://doi.org/10.1016/j.bios.2010.07.018

    Article  PubMed  CAS  Google Scholar 

  26. Yang K, Wang S, Wang Y et al (2017) Dual-channel probe of carbon dots cooperating with gold nanoclusters employed for assaying multiple targets. Biosens Bioelectron 91:566–573. https://doi.org/10.1016/j.bios.2017.01.014

    Article  PubMed  CAS  Google Scholar 

  27. Simões EFC, Esteves da Silva JCG, Leitão JMM (2015) Peroxynitrite and nitric oxide fluorescence sensing by ethylenediamine doped carbon dots. Sensors Actuators B Chem 220:1043–1049. https://doi.org/10.1016/j.snb.2015.06.072

    Article  CAS  Google Scholar 

  28. Luo M, Hua Y, Liang Y et al (2017) Synthesis of novel β-cyclodextrin functionalized S, N codoped carbon dots for selective detection of testosterone. Biosens Bioelectron 98:195–201. https://doi.org/10.1016/j.bios.2017.06.056

    Article  PubMed  CAS  Google Scholar 

  29. Yang W, Ni J, Luo F et al (2017) Cationic carbon dots for modification-free detection of Hyaluronidase via an electrostatic-controlled Ratiometric fluorescence assay. Anal Chem 89:8384–8390. https://doi.org/10.1021/acs.analchem.7b01705

    Article  PubMed  CAS  Google Scholar 

  30. Devi P, Kaur G, Thakur A et al (2017) Waste derivitized blue luminescent carbon quantum dots for selenite sensing in water. Talanta 170:49–55. https://doi.org/10.1016/j.talanta.2017.03.069

    Article  PubMed  CAS  Google Scholar 

  31. Li Z, Zhang J, Li Y et al (2018) Carbon dots based photoelectrochemical sensors for ultrasensitive detection of glutathione and its applications in probing of myocardial infarction. Biosens Bioelectron 99:251–258. https://doi.org/10.1016/j.bios.2017.07.065

    Article  PubMed  CAS  Google Scholar 

  32. Hou J, Li H, Wang L et al (2016) Rapid microwave-assisted synthesis of molecularly imprinted polymers on carbon quantum dots for fluorescent sensing of tetracycline in milk. Talanta 146:34–40. https://doi.org/10.1016/j.talanta.2015.08.024

    Article  PubMed  CAS  Google Scholar 

  33. Li H, Kang Z, Liu Y, Lee ST (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230. https://doi.org/10.1039/c2jm34690g

    Article  CAS  Google Scholar 

  34. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381. https://doi.org/10.1039/C4CS00269E

    Article  PubMed  CAS  Google Scholar 

  35. Han T, Yan T, Li Y et al (2015) Eco-friendly synthesis of electrochemiluminescent nitrogen-doped carbon quantum dots from diethylene triamine pentacetate and their application for protein detection. Carbon N Y 91:144–152. https://doi.org/10.1016/j.carbon.2015.04.053

    Article  CAS  Google Scholar 

  36. Wang K, Guan F, Li H et al (2015) One-step synthesis of carbon nanodots for sensitive detection of cephalexin. RSC Adv 5:20511–20515. https://doi.org/10.1039/C4RA15433A

    Article  CAS  Google Scholar 

  37. Li X, Zhang S, S a K et al (2015) Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci Rep 4:4976. https://doi.org/10.1038/srep04976

    Article  CAS  Google Scholar 

  38. Wang K, Wang X, Li M et al (2016) Chemiluminescence of O-doped carbon Nanodots prepared in acidic and alkaline conditions. J Biomater Tissue Eng 6:35–41. https://doi.org/10.1166/jbt.2016.1411

    Article  Google Scholar 

  39. Yang M, Li H, Liu J et al (2014) Convenient and sensitive detection of norfloxacin with fluorescent carbon dots. J Mater Chem B 2:7964–7970. https://doi.org/10.1039/C4TB01385A

    Article  CAS  Google Scholar 

  40. Niu J, Gao H (2014) Synthesis and drug detection performance of nitrogen-doped carbon dots. J Lumin 149:159–162. https://doi.org/10.1016/j.jlumin.2014.01.026

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant No. 1508RJZA078 of the Natural Science Foundation of Gansu, the hongliu young teacher cultivate project of Lanzhou University of Technology (Q201211) and the Doctoral research start-funded projects of Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunjie Wang.

Ethics declarations

Conflicts of Interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Ji, Q., Xu, J. et al. Highly Sensitive and Selective Detection of Amoxicillin Using Carbon Quantum Dots Derived from Beet. J Fluoresc 28, 759–765 (2018). https://doi.org/10.1007/s10895-018-2237-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2237-0

Keywords

Navigation