Skip to main content

Advertisement

Log in

Spectro Analytical, Computational and In Vitro Biological Studies of Novel Substituted Quinolone Hydrazone and it’s Metal Complexes

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Some novel transition metal [Cu (II), Ni (II) and Co (II)] complexes of nalidixic acid hydrazone have been prepared and characterized by employing spectro-analytical techniques viz: elemental analysis, 1H-NMR, Mass, UV–Vis, IR, TGA-DTA, SEM-EDX, ESR and Spectrophotometry studies. The HyperChem 7.5 software was used for geometry optimization of title compound in its molecular and ionic forms. Quantum mechanical parameters, contour maps of highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) and corresponding binding energy values were computed using semi empirical single point PM3 method. The stoichiometric equilibrium studies of metal complexes carried out spectrophotometrically using Job’s continuous variation and mole ratio methods inferred formation of 1:2 (ML2) metal complexes in respective systems. The title compound and its metal complexes screened for antibacterial and antifungal properties, exemplified improved activity in metal complexes. The studies of nuclease activity for the cleavage of CT- DNA and MTT assay for in vitro cytotoxic properties involving metal complexes exhibited high activity. In addition, the DNA binding properties of Cu (II), Ni (II) and Co (II) complexes investigated by electronic absorption and fluorescence measurements revealed their good binding ability and commended agreement of Kb values obtained from both the techniques. Molecular docking studies were also performed to find the binding affinity of synthesized compounds with DNA (PDB ID: 1N37) and “Thymidine phosphorylase from E.coli” (PDB ID: 4EAF) protein targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Zhang QL, Liu JG, Chao H, Xue GQ, Ji LN (2001) DNA-binding and photocleavage studies of cobalt (III) polypyridyl complexes. J Inorg Biochem 83(1):49–55

    Article  CAS  PubMed  Google Scholar 

  2. Delaney S, Pascaly M, Bhattacharya PK, Han K, Barton JK (2002) Oxidative damage by ruthenium complexes containing the dipyridophenazine ligand or its derivatives: a focus on intercalation. Inorg Chem 41(7):1966–1974

    Article  CAS  PubMed  Google Scholar 

  3. Bergeron KL, Murphy EL, Olulade M, Muñoz LD, Williams JC Jr, Almeida KH (2009) Arylphosphonium salts interact with DNA to modulate cytotoxicity. Mutat Res 673(2):141–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kramer R (1999) Bioinorganic models for the catalytic cooperation of metal ions and functional groups in nuclease and peptidase enzymes. Coord Chem Rev 182:243–261

    Article  Google Scholar 

  5. Singh R, Wagh P, Wadhwani S, Gaidhani S, Kumbhar A, Bellare J, Chopade BA (2013) Synthesis, optimization, and characterization of silver nanoparticles from acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int J Nanomedicine 8:4277–4290

    PubMed  PubMed Central  Google Scholar 

  6. Clauben H, Buninga C, Rareya M, Lengauera T (2001) Efficient molecular docking considering protein structure variations. J Mol Biol 308:377–395

    Article  Google Scholar 

  7. Hooper DC, Wolfson JS (1993) Quinolone antimicrobial agents, 2nd edn. American Society for Microbiology, Washington

  8. Gleckman R, Alvarez S, Joubert DW, Matthews SJ (1979) Drug therapy reviews: nalidixic acid. Am J Hosp Pharm 36(8):1071–1076

    CAS  PubMed  Google Scholar 

  9. Crumplin GC (1981) The involvement of DNA topoisomerases in DNA repair and mutagenesis. Carcinogenesis 2:157–160

    Article  CAS  PubMed  Google Scholar 

  10. Maxwell A (1997) DNA gyrase as a drug target. Trends Microbiol 5(3):102

    Article  CAS  PubMed  Google Scholar 

  11. Leisher GY, Froehlich EJ, Gruett MD, Bailey JH, Brundage PR (1962) 1, 8-naphthyridine derivatives a new class of chemotherapeutic agents. J Med Pharm Chem 5:1063

    Article  Google Scholar 

  12. Martindale (1993) In: Reynolds JEF (ed) The Pharmaceutical Press, London

  13. Turel IZ (2002) The interactions of metal ions with quinolone antibacterial agents. Coord Chem Rev 232:27–47

    Article  CAS  Google Scholar 

  14. Tillotson GS (1996) Quinolones: structure-activity relationships and future predictions. J Med Microbial 44:320–324

    Article  CAS  Google Scholar 

  15. Patole J, Sandbhor U, Padhye S, Deobagkar DN, Anson CE, Powell A (2003) Structural chemistry and in vitro anti tubercular activity of acetyl pyridine benzoyl hydrazone and its copper complex against Mycobacteriumsmegmatis. Bioorg Med Chem Lett 13:51–55

    Article  CAS  PubMed  Google Scholar 

  16. Kalsi R, Shrimali M, Bhalla TN, Barthwal JP (2006) Synthesis and anti-inflammatory activity of indolyl azetidinones. Indian J Pharm Sci 41:353–359

    Google Scholar 

  17. Melnyk P, Leroux V, Sergheraert C, Grellier P (2006) Design, synthesis and in vitro antimalarial activity of anacylhydrazone library. Biloorg Med Chem Left 16:31–35

    Article  CAS  Google Scholar 

  18. Ozdemir A, Turan-Zitouni G, Kaplancikl ZA, Demirci F, Iscan G (2008) Studies on hydrazone derivivaties anti fungalagents. Med Chem 23:470–475

    CAS  Google Scholar 

  19. Kamel AM, Lobna MA, EI-Sayed ML, Mohamed IH, Raina HB (2006) Hydrazones of 2-aryl-quinoline-4-carboxylicacid hydrazides: synthesis and preliminary evalution as a antimicrobial agents. Bioorg Med Chem 14:8675–8682

    Article  Google Scholar 

  20. Dimmock JR, Vashisha SC, Stables JP (2000) Anti convulsant properties of various acetyl hydrazones, oxamoylhydrazones and semicarbazones derived from aromatic and unsaturated carbonyl compounds. Eur J Med Chem 35:241–248

    Article  CAS  PubMed  Google Scholar 

  21. Narsimha N, Ranjithreddy P, Jaheer MD, Aparna B, Sarala Devi CH (2015) Synthesis, characterization and biological studies of novel (16Z)-1-ethyl-1, 4-dihydro-N’-(1-(3, 4- dihydro-6-methyl-2, 4-dioxo-2H-pyran-3-yl) ethylidene)-7-methyl-4-oxo-1, 8-naphthyridine 3- carbohydrazide) and its Cu (II), Ni (II) and Co (II) complexes. Int J Res Pharm Chem 5(4):615–633

    CAS  Google Scholar 

  22. Aparna AV, Sudeepa K, Raghavaiah P, Sarala Devi CH (2013) Spectro-analytical-ray diffraction and computational studies on N-[(2-hydroxyphenyl) methylidene] acetohydrazide and its copper complex. J Indian Chem Soc 90:33–39

    CAS  Google Scholar 

  23. Hyperchem (2003) Hypercube, Inc

  24. Vanciuc O (1996) Hyperchem release 4.5 for Windows. J Chem Inf Comput Sci 36(3):612–614

    Article  Google Scholar 

  25. HyperChem Software (2006) Hypercube Inc Florida Science and Technology Park, USA

  26. Jaheer MD, Ranjithreddy P, Shravan Kumar G, Sarala devi CH (2015) Homology modeling and molecular docking studies of novel quinazolinone and benzothiazole derivatives as DNA topoisomerase II inhibitors. Int J Pharm Sci Rev Res 35(1):84–89

    Google Scholar 

  27. Searle MS, Maynard AJ, Williams HE (2003) DNA recognition by the anthracycline antibiotic respinomycin D: NMR structure of the intercalation complex with d (AGACGTCT) 2. Org Biomol Chem 1(1):60 – 6

  28. Scanner MF (1999) Python: a programming language for software integration and development. J Mol Graph Model 17(1):57–61

    Google Scholar 

  29. Anupama B, Aruna A, Vijjulatha M, Sreekanth S, Vijay Sagar M, Chandrashekar R (2017) Synthesis, spectral characterization, DNA/ protein binding, DNA cleavage, cytotoxicity, antioxidative and molecular docking studies of Cu(II)complexes containing Schiff base-bpy/Phen ligands. J Fluoresc. https://doi.org/10.1007/s10895-017-2030-5

    PubMed  Google Scholar 

  30. Reichmann ME, Thomas CA, Doty P (1954) A further examination of the molecular weight and size of desoxypentose nucleic acid. J Am Chem Soc 76:3047–3053

    Article  CAS  Google Scholar 

  31. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  32. Srishailam A, Praveen Kumar Y, Venkat Reddy P, Navaneetha NB, Uma V, Surya Singh S, Satyanarayana S (2014) Celular uptake, cytotoxicity, apoptosis, DNA-binding, photocleavage and molecular docking studies of ruthenium (II) polypyridyl complexes. J Photochem Photobiol B Biol 132:111–123

    Article  CAS  Google Scholar 

  33. Lakowicz JR, Webber G (1973) Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biol Chem 12(21):4161–4170

    CAS  Google Scholar 

  34. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

  35. Padmaja A, Laxmi K, Sarala Devi CH (2011) Spectro-analytical studies on (E)-N′-(2-hydroxybenzylidene) benzohydrazide and its interaction with CuII. J Indian Chem Soc 88:183–187

    CAS  Google Scholar 

  36. Bellamy LJ (1958) the infra-red spectra of complex molecules. Second Ed, London

    Google Scholar 

  37. Nakamoto K (1971) Infrared spectra of inorganic and coordination compounds. Part B, Fifth Ed. Wiley Interscience, New York

  38. Kishan Prasad CH, Ravi M, Ushaiah B, Srinu V, Ravi Kumar E, Sarala Devi CH (2016) Synthesis, characterization, DNA interactions, DNA cleavage, radical scavenging activity, antibacterial, anti-proliferative and docking studies of new transition metal complexes. J Fluoresc 26:189–205

  39. Saydam S, Yilmaz E (2006) Synthesis, characterization and thermal behavior of 4-chloromethyl-2-(2-hydroxybenzilidenehydrazino) thiazole and its complexes with Cr(III), Co(II), Ni(II) and Cu(II). Spectrochimica Acta Part A 63:506–510

    Article  CAS  Google Scholar 

  40. Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds. Fifth Ed. Wiley-Interscience, New York

    Google Scholar 

  41. Bellamy LJ (1980) The infrared spectra of complex molecules. Second Ed. London

  42. Rambabu A, Pradeep Kumar M, Tejaswi S, Vamsikrishna V, Shivaraj (2016) DNA interaction, antimicrobial studies of newly synthesized copper (II) complexes with 2-amino-6-(trifluoromethoxy) benzothiazole Schiff base ligand. J Photochem Photobiol B Biol 165:147–156

    Article  CAS  Google Scholar 

  43. Ravi M, Kishan Prasad CH, Ushaiah B, Ravi Kumar E, Shyam P, Sarala Devi CH (2015) A study on spectro-analytical aspects, DNA-interaction, photo-cleavage, radical scavenging, cytotoxic activities, antibacterial and docking properties of 3-(1-(6-methoxybenzo [d] thiazol-2-ylimino) ethyl)-6-methyl-3H-pyran-2, 4-dione and its metal complexes. J Fluoresc 25:1279 – 1296

    Article  CAS  PubMed  Google Scholar 

  44. Pradeep Kumar M, Tejaswi S, Rambabu A, Veerendra Kumar AK, Shivaraj (2015) Synthesis, crystal structure, DNA binding and cleavage studies of copper(II) complexes with isoxazole Schiff bases. Polyhedron 102:111–120

    Article  CAS  Google Scholar 

  45. Waring MJ (1965) Complex formation between ethidium bromide and nucleic acids. J Mol Biol 13:269–282

    Article  CAS  PubMed  Google Scholar 

  46. Rabindra Reddy P, Rajeshwar S, Satyanarayan B (2016) Synthesis, characterization of new copper (ii) Schiff base and 1,10 phenanthroline complexes and study of their bioproperties. J Photochem Photobiol B Biol 160:217–224

    Article  Google Scholar 

  47. Li Y, Wu Y, Zhao J, Yang P (2007) DNA-binding and cleavage studies of novel binuclear copper(II) complex with 1,1 0 -dimethyl-2,2 0 -biimidazole ligand. J Inorg Biochem 101:283–290

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The University Grants Commission, New Delhi, India, is gratefully acknowledged for financial support in the form of a Senior Research Fellowship to N.N. We thank Instrumentation Lab Facilities, Department of Chemistry and Central Facilities for Research & Development (CFRD), Osmania University. We acknowledge the IICT Hyderabad and Sophisticated Analytical Instrument Facility (SAIF), IIT Bombay and also Kalams Institute of Sciences, Hyderabad for the cytotoxicity studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarala Devi Ch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 841 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagula, N., Kunche, S., Jaheer, M. et al. Spectro Analytical, Computational and In Vitro Biological Studies of Novel Substituted Quinolone Hydrazone and it’s Metal Complexes. J Fluoresc 28, 225–241 (2018). https://doi.org/10.1007/s10895-017-2185-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2185-0

Keywords

Navigation