Skip to main content
Log in

Microwave-Assisted Combustion Synthesis of ZnO:Eu Nanoparticles: Effect of Fuel Types

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Nanoparticles of Europium oxide doped with Zinc oxide were synthesized via microwave-assisted combustion method. Citric acid as a simultaneous fuel and chelating agent and glycine as a fuel and mixture of these fuels were sleeted. X-Ray diffraction patterns (XRD) indicated the formation of ZnO structure with a few amount of Eu2O3 phase. Fourier transformation infra red (FTIR) spectra reveal the increase of ZnO4 bonds with glycine content of fuels mixture. Scanning electron microscope (SEM) images showed the conversion of nanosphere to spongy-like structure with respect to change of fuel mixtures from citric to glycine. From transmission electron microscopy (TEM) nanoparticles of a mean size 30 nm are observed Green fluorescence emission of different samples was due to activation of self activated center of ZnO structure through transition of electron from Eu3+ to Vzn sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jadwisienczak WM, Lozykowski HJ, Xu A, Patel B (2002) Visible emission from ZnO doped with rare-earth ions. J Electron Mater 31:776. https://doi.org/10.1007/s11664-002-0235-z

    Article  CAS  Google Scholar 

  2. Yang CC, Cheng SY, Lee HY, Chen SY (2006) Effects of phase transformation on photoluminescence behavior of ZnO:Eu prepared in different solvents. Ceram Int 32:37–41. https://doi.org/10.1016/j.ceramint.2004.11.016

    Article  CAS  Google Scholar 

  3. Najafi M, Haratizadeh H (2015) Investigation of intrinsic and extrinsic defects effective role on producing intense red emission in ZnO:Eu nanostructures. Mater Res Bull 65:103–109. https://doi.org/10.1016/j.materresbull.2015.01.035

    Article  CAS  Google Scholar 

  4. Wang DD, Xing GZ, Yang JH, Yang LL, Gao M, Cao J, Zhang YJ, Yao B (2010) Dependence of energy transfer and photoluminescence on tailored defects in Eu-doped ZnO nanosheets-based microflowers. J Alloys Compd 504:22–26. https://doi.org/10.1016/j.jallcom.2010.05.105

    Article  CAS  Google Scholar 

  5. Santos Oliveira C, Bettini J, Sigoli FA, Mazali IO (2015) Europium (III)-doped ZnO obtained by a hierarchically nanostructured multilayer growth strategy. Cryst Growth Des 15:5246–5253. https://doi.org/10.1021/acs.cgd.5b00712

    Article  Google Scholar 

  6. Wang M, Huang C, Huang Z, Guo W, Huang J, He H, Wang H, Cao Y, Liu Q, Liang J (2009) Synthesis and photoluminescence of Eu-doped ZnO microrods prepared by hydrothermal method. Opt Mater 31:1502–1505. https://doi.org/10.1016/j.optmat.2009.02.009

    Article  CAS  Google Scholar 

  7. Aneesh PM, Jayaraj MK (2010) Red luminescence from hydrothermally synthesized Eu-doped ZnO nanoparticles under visible excitation.Bull. Mater Sci 33:227–231. https://doi.org/10.1007/s12034-010-0035-7

    CAS  Google Scholar 

  8. Oudhia A, Shukla N, Bose P, Lalwani R, Choudhary A (2016) Effect of various synthesis protocols on doping profile of ZnO:Eu Nanowires. Nano-Struct Nano-Objects 7:69–74. https://doi.org/10.1016/j.nanoso.2016.05.002

    Article  CAS  Google Scholar 

  9. Luo L, Gong L, Liu YF, Chen J, Ding CR, Tang XG, Li XL, Qiu ZR, Wang HZ, Chen XM, Li KF, Fan HH, Cheah KW (2010) Enhanced ultraviolet lasing from europium-doped zinc oxide nanocrystals. Opt Mater. 32:1066–1070. https://doi.org/10.1016/j.optmat.2010.02.032

    Article  CAS  Google Scholar 

  10. Xue D, Zhang J, Yang C, Wang T (2008) PL and EL characterizations of ZnO:Eu3+, Li+ films derived by sol–gel process. J Lumin 128:685–689. https://doi.org/10.1016/j.jlumin.2007.11.077

    Article  CAS  Google Scholar 

  11. Pan CJ, Chen CW, Chen JY, Huang PJ, Chi GC, Chang CY, Ren F, Pearton SJ (2009) Optical and structural properties of Eu-diffused and doped ZnO nanowires. Appl Surf Sci 256:187–190. https://doi.org/10.1016/j.apsusc.2009.07.108

    Article  CAS  Google Scholar 

  12. Ebisawa K, Okuno T, Abe K (2008) Photoluminescence properties of Eu 3+ doped ZnO nano needles. Jpn J Appl Phys 47:7236–7238. https://doi.org/10.1143/JJAP.47.7236

    Article  CAS  Google Scholar 

  13. Devi SKL, Kumar KS, Balakrishnan A (2011) Rapid synthesis of pure and narrowly distributed Eu doped ZnO nanoparticles by solution combustion method. Mater Lett 65:35–37. https://doi.org/10.1016/j.matlet.2010.08.058

    Article  Google Scholar 

  14. Chandrasekhar M, Nagabhushana H, Sharma SC, Sudheer Kumar KH, Dhananjaya N, Sunitha DV, Shivakumara C, Nagabhushana BM (2014) Particle size, morphology and color tunable ZnO:Eu3+ nanophosphors via plant latex mediated green combustion synthesis. J Alloys Compd 584:417–424. https://doi.org/10.1016/j.jallcom.2013.08.149

    Article  CAS  Google Scholar 

  15. Najafi M, Haratizadeh H (2015) The effects of Al doping and post-annealing via intrinsic defects on photoluminescence properties of ZnO:Eu nanosheets. Mater Sci Semicond Process 31:76–83. https://doi.org/10.1016/j.mssp.2014.11.021

    Article  CAS  Google Scholar 

  16. Rasouli S, Jebeli Moeen S (2011) Combustion synthesis of Co-doped zinc oxide nanoparticles using mixture of citric acid–glycine fuels. J Alloys Compd 509:1915–1919. https://doi.org/10.1016/j.jallcom.2010.10.087

    Article  CAS  Google Scholar 

  17. Trandafilovic LV, Jovanovic DJ, Zhang X, Ptasinska S, Dramican MD (2017) Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles. Appl Catal B Environ 203:740–752. https://doi.org/10.1016/j.apcatb.2016.10.063

    Article  CAS  Google Scholar 

  18. Chen R, Shen YQ, Xiao F, Liu B, Gurzadyan GG, Dong ZL, Sun XW, Sun HD (2010) Surface Eu-treated ZnO nanowires with efficient red emission. J Phys Chem C 114:18081–18084. https://doi.org/10.1016/j.apcatb.2016.10.063

    Article  CAS  Google Scholar 

  19. Lavat AE, Wagner CC, Tasca JE (2008) Interaction of Co–ZnO pigments with ceramic frits: a combined study by XRD, FTIR and UV–visible. Ceram Int 34:2147–2153. https://doi.org/10.1016/j.ceramint.2007.09.003

    Article  CAS  Google Scholar 

  20. Li F, Hu K, Li J, Zhang D, Chen G (2002) Combustion synthesis of γ-lithium aluminate by using various fuels. J Nucl Mater 300:82–88. https://doi.org/10.1016/S0022-3115(01)00710-3

    Article  CAS  Google Scholar 

  21. Wu KH, Ting TH, Li MC, Ho WD (2006) Sol–gel auto-combustion synthesis of SiO2-doped NiZn ferrite by using various fuels. J Magn Magn Mater 298:25–32. https://doi.org/10.1016/j.jmmm.2005.03.008

    Article  CAS  Google Scholar 

  22. Krishna R, Haranath D, Singh SP, Chander H, Pandey AC, Kanjilal D (2007) Synthesis and improved photoluminescence of Eu:ZnO phosphor. J Mater Sci 42:10047–10051. https://doi.org/10.1007/s10853-007-2053-4

    Article  CAS  Google Scholar 

  23. Chen P, Ma X, Yang D (2007) ZnO:Eu thin-films: sol–gel derivation and strong photoluminescence from 5D07F0transition of Eu3+ions. J Alloys Compd 431:317–320. https://doi.org/10.1016/j.jallcom.2006.05.078

    Article  CAS  Google Scholar 

  24. Jagannatha Reddy A, Kokila MK, Nagabhushana H, Shivakumara C, Chakradhar RPS, Nagabhushana BM, Hari R, Krishna (2013) Luminescence studies and EPR investigation of solution combustion derived Eu doped ZnO. Spectrochim Acta Mol Biomol 132:305–312. https://doi.org/10.1016/j.saa.2014.04.064

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sousan Rasouli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasouli, S., Arabi, AM., Naeimi, A. et al. Microwave-Assisted Combustion Synthesis of ZnO:Eu Nanoparticles: Effect of Fuel Types. J Fluoresc 28, 167–172 (2018). https://doi.org/10.1007/s10895-017-2179-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2179-y

Keywords

Navigation